MCE ®

Product Data Sheet

AChE/BChE-IN-12

Cat. No.: HY-149211 Molecular Formula: $C_{23}H_{21}N_3O_6$ Molecular Weight: 435.43

Target: Cholinesterase (ChE); Beta-secretase; Amyloid-β

Pathway: Neuronal Signaling

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description	AChE/BChE-IN-12 (compound 10b), a 3,5-dimethoxy analogue, is a potent AChE, BChE, and β -secretase-1 (BACE-1) inhibitor, with IC $_{50}$ values of 2.57, 3.26, and 10.65 μ M, respectively. AChE/BChE-IN-12 crosses the blood-brain barrier via passive diffusion and inhibits the self-aggregation of amyloid- β monomers. AChE/BChE-IN-12 can be used for Alzheimer's disease (AD) research ^[1] .		
IC ₅₀ & Target	EeAChE 2.57 ± 0.3 μM (IC ₅₀)	eqBCHE $3.26 \pm 0.1 \mu \text{M} (\text{IC}_{50})$	BACE1 $10.65 \pm 0. \mu M (IC_{50})$
In Vitro	AChE/BChE-IN-12 (compound 10b) interacts with peripheral anionic site (PAS) as well as catalytic anionic site (CAS) residues of AChE ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		

REFERENCES

[1]. Sharma A, et al. Synthesis and Biological Evaluation of Coumarin Triazoles as Dual Inhibitors of Cholinesterases and β-Secretase. ACS Omega. 2023 Mar 16;8(12):11161-11176.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA