**Proteins** 



# **Product** Data Sheet

#### MAO-B-IN-18

Cat. No.: HY-149234 Molecular Formula:  $C_{25}H_{22}N_4O_5$ Molecular Weight: 458.47

Monoamine Oxidase Target: Pathway: **Neuronal Signaling** 

Storage: Powder -20°C 3 years

In solvent

4°C 2 years -80°C 6 months

-20°C 1 month

#### **SOLVENT & SOLUBILITY**

In Vitro

DMSO: 100 mg/mL (218.12 mM; Need ultrasonic)

| Preparing<br>Stock Solutions | Solvent Mass<br>Concentration | 1 mg      | 5 mg       | 10 mg      |
|------------------------------|-------------------------------|-----------|------------|------------|
|                              | 1 mM                          | 2.1812 mL | 10.9058 mL | 21.8117 mL |
|                              | 5 mM                          | 0.4362 mL | 2.1812 mL  | 4.3623 mL  |
|                              | 10 mM                         | 0.2181 mL | 1.0906 mL  | 2.1812 mL  |

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: 2.5 mg/mL (5.45 mM); Clear solution; Need ultrasonic

## **BIOLOGICAL ACTIVITY**

Description MAO-B-IN-18 is a potent and selective MAO B inhibitor with IC $_{50}$ s of 52 nM and 14  $\mu$ M for hMAO B and hMAO A, respectively.

MAO-B-IN-18 enables promising cytoprotective effects against hydrogen peroxide insults in neuroblastoma and astrocytes

cultures<sup>[1]</sup>.

hMAO-B IC<sub>50</sub> & Target hMAO-A

52 nM (IC<sub>50</sub>) 14 μM (IC<sub>50</sub>)

In Vitro MAO-B-IN-18 (compound 20; 0.1, 0.5, 1,  $5\,\mu\text{M}$ ) at low concentration proves to be able to protect neuroblastoma cells from

pro-oxidant insults through ROS-scavenging pathways at a moderate level in SH-SY5Y cells<sup>[1]</sup>.

MAO-B-IN-18 (5 μM) co-incubated at with hydrogen peroxide (400 μM) maintains viable cells at a level comparable to that of

Quercetin (HY-18085) used as positive control at higher doses (75 μM) in DI TNC1 astrocyte cell line<sup>[1]</sup>.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

### **REFERENCES**

[1]. Mariagrazia Rullo, et al. Bioisosteric replacement based on 1,2,4-oxadiazoles in the discovery of 1H-indazole-bearing neuroprotective MAO B inhibitors. Eur J Med Chem. 2023 Jul 5;255:115352.

[2]. Mariagrazia Rullo, et al. Bioisosteric replacement based on 1,2,4-oxadiazoles in the discovery of 1H-indazole-bearing neuroprotective MAO B inhibitors. Eur J Med Chem. 2023 Jul 5;255:115352.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com