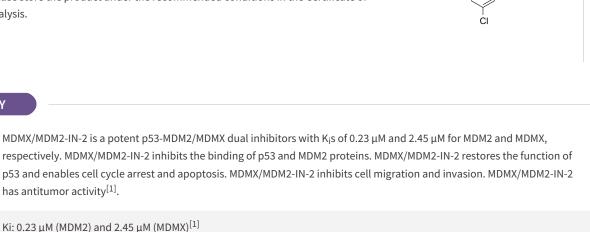
MDMX/MDM2-IN-2


BIOLOGICAL ACTIVITY

Description

IC₅₀ & Target

In Vitro

Cat. No.:	HY-149250	
Molecular Formula:	C ₂₈ H ₂₅ Cl ₃ FN ₃ O ₃	
Molecular Weight:	576.87	
Target:	MDM-2/p53; Apoptosis	
Pathway:	Apoptosis	
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.	

MDMX/MDM2-IN-2 demonstrates moderate anti-proliferative activities against HCT116 and SH-SY5Y cells (IC₅₀=0.68 μM and 0.54 μM, respectively). MDMX/MDM2-IN-2 possesses low cytotoxicity on normal human lung epithelial BEAS-2B cells and LO2 liver cells (IC₅₀=17.96 μM and 15.93 μM, respectively)^[1].

MDMX/MDM2-IN-2 (0.6-2.4 µM; 48 h) induces apoptosis of HCT116 and SH-SY5Y cells^[1].

MDMX/MDM2-IN-2 (0.6-2.4 μ M; 48 h) arrests the cell cycle in G1 phase^[1].

MDMX/MDM2-IN-2 (0.6-2.4 μ M; 48 h) increases the levels of p53 and its downstream targets, MDM2, MDMX, p21 and cleaved-caspase3^[1].

MDMX/MDM2-IN-2 (0.4-0.8 µM) dramatically inhibits colony formation, migration and invasion of HCT116 and SH-SY5Y cells [1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Apoptosis Analysis^[1]

Cell Line:	HCT116 and SH-SY5Y cells	
Concentration:	0.6, 1.2, 2.4 μΜ	
Incubation Time:	48 h	
Result:	The percentages of apoptotic HCT116 and SH-SY5Y cells were 13.63% and 15.69% with 0.6 μ M. The percentage of apoptotic cells correspondingly increased to 37.6% and 40.8% with 2.4 μ M.	

Cell Cycle Analysis^[1]

Cell Line:

Product Data Sheet

Concentration:	0.6, 1.2, 2.4 μΜ	
Incubation Time:	48 h	
Result:	There was an increase in the percentage of cancer cells at the G1 phase. Meanwhile, the percentage of G2 phase cells was relatively decreased.	
Western Blot Analysis ^[1]		
Cell Line:	HCT116 and SH-SY5Y cells	
Concentration:	0.6, 1.2, 2.4 μM	
Incubation Time:	48 h	
Result:	Increased the levels of p53 and its downstream targets, MDM2, MDMX, p21 and cleaved- caspase3.	
Cell Migration Assay ^[1]		
Cell Line:	HCT116 and SH-SY5Y cells	
Concentration:	0.4, 0.6, 0.8 μM	
Incubation Time:	48 h	
Result:	Significantly inhibited the migration and invasion in a dose-dependent manner.	

REFERENCES

[1]. Hui-Juan Luo, et al. Structure-based discovery of novel α -aminoketone derivatives as dual p53-MDM2/MDMX inhibitors for the treatment of cancer. Eur J Med Chem. 2023 Apr 5;252:115282.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA