FAK-IN-9

BIOLOGICAL

Description

IC₅₀ & Target

In Vitro

Cat. No.: CAS No.: Molecular Formula: Molecular Weight: Target: Pathway:	HY-149259 2911655-93-9 C ₃₆ H ₃₈ ClN ₇ O ₈ S 764.25 FAK Protein Tyrosine Kinase/RTK	$(\mathbf{y}_{n}^{0}, \mathbf{y}_{n}^{0}, y$
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.	

	Analysis.
ACTI	νιτγ
	FAK-IN-9 (Compound 8f) is a potent and orally active FAK inhibitor with an IC ₅₀ of 27.44 nM. FAK-IN-9 induces triple-negative breast cancer (TNBC) cell apoptosis ^[1] .
	IC50: 27.44 nM (FAK) ^[1]
	 FAK-IN-9 (Compound 8f; 72 h) shows antiproliferative activity with IC₅₀s of 0.167±0.025, 0.126±0.012 and 0.159±0.017 μM against MDA-MB-157, MDA-MB-231 and MDA-MB-453 cells, respectively^[1]. FAK-IN-9 (1-4 μM; 72 h) leads to relatively high levels of NO production in a dose-dependent manner in MDA-MB-231 cells^[1]. FAK-IN-9 (1-4 μM; 48 h) inhibits invasion and migration of MDA-MB-231 cells^[1]. FAK-IN-9 (1-4 μM; 72 h) efficiently blocks FAK mediated-signaling pathways^[1]. FAK-IN-9 (4 μM; 72 h) inhibits the formation of focal adhesions (FAs) and stress fibers (SFs) in MDA-MB-231 cells^[1]. FAK-IN-9 (1-4 μM; 72 h) induces MDA-MB-231 cell apoptosis^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Proliferation Assay^[1]
	Cell Line: MDA-MB-157, MDA-MB-231, MDA-MB-453 and MCF10A

Cell Line:	MDA-MB-157, MDA-MB-231, MDA-MB-453 and MCF10A	
Concentration:		
Incubation Time:	72 h	
Result:	Inhibited proliferation with IC ₅₀ s of 0.167 \pm 0.025, 0.126 \pm 0.012, 0.159 \pm 0.017 and 2.401 \pm 0.131 μ M against MDA-MB-157, MDA-MB-231, MDA-MB-453 and MCF10A, respectively.	

Cell Invasion Assay^[1]

Cell Line:	MDA-MB-231 cells
Concentration:	1, 2 and 4 μM
Incubation Time:	48 h
Result:	The numbers of invasive MDA-MB-231 cells were reduced dose-dependently.

Cell Migration Assay ^[1]

Cell Line:	MDA-MB-231 cells
Concentration:	1, 2 and 4 μM
Incubation Time:	48 h
Result:	Remarkably block the migration of MDA-MB-231 cells in a dose-dependent manner.
Western Blot Analysis ^[1]	
Cell Line:	MDA-MB-231 cells
Concentration:	1, 2 and 4 μM
Incubation Time:	72 h
Result:	Potently suppressed the autophosphorylation of Y397 in a dose-dependent manner. Decreased the levels of p-AKT, MMP-2 and MMP-9 dose dependently.
Apoptosis Analysis ^[1]	
Cell Line:	MDA-MB-231 cells
Concentration:	1, 2 and 4 μM
Incubation Time:	72 h
Result:	The percentage of apoptotic MDA-MB-231 cells gradually increased ranging from 19.06% to 77.66% at 4 $\mu\text{M}.$
FAK-IN-9 (Compound 8f MCE has not independe	; 15 or 30 mg/kg; oral; once daily for 30 days) inhibits MDA-MB-231 lung metastasis in mice ^[1] . ntly confirmed the accuracy of these methods. They are for reference only.
Animal Model:	BALB/c nude mice, MDA-MB-231 experimental pulmonary metastasis model $^{[1]}$
Dosage:	15 or 30 mg/kg
Administration:	Oral, once daily for 30 days
Result.	Potently reduced the numbers of lung tumor nodules dose-dependently.

REFERENCES

In Vivo

[1]. Zhang J, et al. Design, synthesis and evaluation of nitric oxide releasing derivatives of 2,4-diaminopyrimidine as novel FAK inhibitors for intervention of metastatic triple-negative breast cancer. Eur J Med Chem. 2023 Mar 15;250:115192.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA