Proteins

Migalastat

Pathway:

Cat. No.: HY-14929 CAS No.: 108147-54-2

Molecular Formula: $C_6H_{13}NO_4$ Molecular Weight: 163.17 Others Target:

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

Others

OH

Product Data Sheet

BIOLOGICAL ACTIVITY

Description Migalastat (GR181413A free base) is an orally active and competitive inhibitor of α -galactosidase A (α -Gal A) with an IC₅₀ of 0.04 μ M for human α -Gal A^[1].

IC50: 0.04 μ M (human α -Gal A)^[1]; IC₅₀ & Target

Ki: $0.04 \,\mu\text{M}$ (human α -Gal A)^[1]

In Vitro Migalastat inhibits human lysosomal a-Gal A with IC₅₀ and K_i values of 0.04 μ M^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[4]

Cell Line:	EHK cells mutated α-Gal A
Concentration:	10 μΜ
Incubation Time:	9 days
Result:	Reduced Gb3 accumulation and lysosome volume.

In Vivo Fabry disease is an X-linked recessive disorder caused by the deficient activity of α -galactosidase $A^{[2]}$.

> Migalastat (oral gavage, 3 mg/kg daily for 4 weeks) increases α -Gal A activity in heart, kidney, spleen, and liver in a dose- and time-dependently in transgenic mice that express human mutant alpha-Gal A (TgM)^[2].

Migalastat shows the half-life of less than 1 day in all major issues in TgM for 2 weeks pretreatment^[2].

Migalastat (oral gavage, 100 mg/kg daily for 28 days) to transgenic mice reduces lyso-Gb3 levels up to 64%, 59%, and 81% in kidney, heart, and skin, respectively^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male nontransgenic (Non-Tg) C57BL/6 mice; transgenic mice expressing human mutant R301Q α -Gal A (TgM), α -Gal A knockout mice (KO), mice express human R301Q α -Gal A in a null background (TgM/KO) $^{[2]}$
Dosage:	3 mg/kg
Administration:	Oral gavage; every day for 4 weeks

Result:	Reduced Globotriaosylceramide (Gb3) storage remarkably in kidney of mice.

REFERENCES

- [1]. Asano N, et al. In vitro inhibition and intracellular enhancement of lysosomal alpha-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. Eur J Biochem. 2000 Jul;267(13):4179-86.
- [2]. Ishii S, et al. Preclinical efficacy and safety of 1-deoxygalactonojirimycin in mice for Fabry disease. J Pharmacol Exp Ther. 2009 Mar;328(3):723-31.
- [3]. Young-Gqamana B, et al. Migalastat HCl reduces globotriaosylsphingosine (lyso-Gb3) in Fabry transgenic mice and in the plasma of Fabry patients. PLoS One. 2013;8(3):e57631.
- [4]. Welford RWD, et al. Glucosylceramide synthase inhibition with lucerastat lowers globotriaosylceramide and lysosome staining in cultured fibroblasts from Fabry patients with different mutation types. Hum Mol Genet. 2018 Oct. 27(19):3392-3403.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com