

Product Data Sheet

3-MeOARh-NTR chloride

Molecular Weight: 632.06

Target: Fluorescent Dye

Pathway: Others

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description	3-MeOARh-NTR chloride is an activatable imaging probe with high selectivity, and good stability. 3-MeOARh-NTR chloride possesses high selectivity and high signal-to-noise ratio for nitroreductase (NTR) detection, and serves as an efficient molecular tool for endogenous NTR detection ^[1] .
In Vitro	3-MeOARh-NTR chloride (10 μ M, 30 min; cell incubated with 20% O ₂ and 10% O ₂ for 12 h) produces a strong fluorescence signal in living HeLa cells with decreasing oxygen contents ^[1] . 3-MeOARh-NTR chloride (10 μ M, 30 min) produces fluorescence imaging of kidney tissues from mice with λ ex = 488 nm and λ em=510-590 nm. Thus, 3-MeOARh-NTR chloride is a efficient probe to evaluate kidney hypoxia by NTR detection ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Guo H, et al. Designing a Brightness-Restored Rhodamine Derivative by the Ortho-Compensation Effect for Assessing Drug-Induced Acute Kidney Injury. Anal Chem. 2023 May 2;95(17):6863-6870.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA