Product Data Sheet

R

ODN 2088

Cat. No.: CAS No.: Molecular Weight:	HY-150738 1146541-45-8 4878	
Target:	Toll-like Receptor (TLR) DNA, d(P-thio)(T-C-C-T-G-G-C-G-G-G-G-A-A-G-T)	
Pathway:	Immunology/Inflammation	
Storage:	-20°C, sealed storage, away from moisture * In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)	

Description	ODN 2088 is a potent TLR3, TLR7 and TLR9 inhibitor. ODN 2088 shows no cytotoxic. ODN 2088 inhibits the release of IFN- α and IL-6 ^{[1][2][3]} .			
In Vitro	ODN 2088 (0.01, 0.1, 1, 10 ODN 2088 (0.01, 0.1, 1, 10 μ M) stimulated human PE ODN 2088 (0.01, 0.1, 1, 10 IL-6 release stimulated wi ODN 2088 (0.1, 1, 10 μ M; 2 IL-6 release by imiquimod ODN 2088 (1, 10 μ M; 48 h) CD20 ⁺ B-cells ^[1] . ODN 2088 presumably im fragment of TLR9 ^[1] . ODN 2088 (0.001, 0.01, 0.1 nM) stimulated BMDMs ar ODN 2088 (10 μ M) stimula MCE has not independent Cell Cytotoxicity Assay ^[1]	ODN 2088 (0.01, 0.1, 1, 10 μ M; 48 h) shows no cytotoxic for for human PBMCs ^[1] . ODN 2088 (0.01, 0.1, 1, 10 μ M; 24 h) inhibits the release of IFN- α in CpG-ODN 2216 (3 μ M) and TLR7-ligand RNA-ORN 22075 (5 μ M) stimulated human PBMCs ^[1] . ODN 2088 (0.01, 0.1, 1, 10 μ M; 48 h) hardly inhibits the IL-6 release stimulated with CpG-ODN 2006 (100 nM) but inhibits the IL-6 release stimulated with imiquimod (5 μ g/ml) in human PBMCs ^[1] . ODN 2088 (0.1, 1, 10 μ M; 24 h) hardly inhibits IL-6 release by B-cells stimulated with CpG-DNA 2006 (100 nM) but inhibits the IL-6 release by imiquimod (5 μ g/ml) stimulated human B-cells ^[1] . ODN 2088 (1, 10 μ M; 48 h) increases the expression of CD86 and HLA-DR in the absence of CpG-ODN 2006 or imiquimod in CD20 ⁺ B-cells ^[1] . ODN 2088 presumably impairs TLR9-induced signaling induces by CpG-ODNs by competitive binding to the C-terminal fragment of TLR9 ^[1] . ODN 2088 (0.001, 0.01, 0.1, 1, 10 μ M; 24 h) inhibits the TNF- α secretion in a dose-dependent manner in CpG-ODN 1826 (100 nM) stimulated BMDMs and shows weekly inhibits when stimulated by the TLR7-agonist imiquimod ^[3] . ODN 2088 (10 μ M) stimulates B cells to proliferate ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Cytotoxicity Assay ^[1]		
	Cell Line:	Human PBMCs		
	Concentration:	0.01, 0.1, 1, 10 μΜ		
	Incubation Time:	48 h		
	Result:	Showed no cytotoxic for for human PBMCs.		

REFERENCES

[1]. Römmler F, et al. Guanine-modified inhibitory oligonucleotides efficiently impair TLR7- and TLR9-mediated immune responses of human immune cells. PLoS One. 2015 Feb 19;10(2):e0116703.

[2]. Duramad O, et al. Inhibitors of TLR-9 act on multiple cell subsets in mouse and man in vitro and prevent death in vivo from systemic inflammation. J Immunol. 2005 May 1;174(9):5193-200.

[3]. Römmler F, et al. Guanine modification of inhibitory oligonucleotides potentiates their suppressive function. J Immunol. 2013 Sep 15;191(6):3240-53.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA