Product Data Sheet

AChE-IN-24

Cat. No.: HY-151152

CAS No.: 3033542-32-1

Molecular Formula: C₂₂H₃₀N₂O₄S₂

Molecular Weight: 450.61

Target: Cholinesterase (ChE)
Pathway: Neuronal Signaling

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

N S O N O O

BIOLOGICAL ACTIVITY

Description AChE-IN-24 is a potent AChE inhibitor and can penetrate the BBB. AChE-IN-24 has the mighty inhibitory activity to hAChE with an IC₅₀ value of 0.053 μM. AChE-IN-24 can be used for the research of Alzheimer's disease (AD)^[1].

IC₅₀ & Target AChE

In Vitro AChE-IN-24 (compound 4c2) has good hAChE inhibitory activity with IC₅₀ values of 0.053 μ M but owns little inhibition to hBuChE^[1].

AChE-IN-2 has inhibitory activity for electric eel acetylcholinesterase (eeAChE) and equine serum butyrylcholinesterase (eqBuChE) with IC $_{50}$ values of 0.088 μ M and 7.5 μ M, respectively^[1].

AChE-IN-24 (0-0.2 μ M) can cross the BBB comfortably by means of passive diffusion [1].

AChE-IN-2 (0-40 μ M) triggers the translocation of Nrf2 to the nucleus, thereby expediting the binding of Nrf2 to the ARE for the transcription process^[1].

AChE-IN-2 (7 µM) significantly induces the expression of antioxidant-related enzymes by activating Nrf2 in BV-2 cells^[1].

AChE-IN-2 (1, 3, 7 μM) protects cells from H2O2-induced damage and inhibits ROS accumulation^[1].

AChE-IN-2 (1, 3, 7 μ M) attenuates inflammatory responses^[1].

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

Cell Viability Assay^[1]

Cell Line:	BV-2 microglial cells
Concentration:	0, 2.5, 5, 10, 20 and 40 μM
Incubation Time:	24 h
Result:	Not observed significant cytotoxicity.

Western Blot Analysis^[1]

Cell Line:	BV-2 microglial cells
Concentration:	7 μΜ
Incubation Time:	0-15 h
Result:	Up-regulated the amount of total Nrf2 in a time-dependent manner, decreased gradually

the cytosolic Nrf2 level with its continuous accumulation in the nucleus and increased the total cellular Nrf2 accumulation in concentration-dependently. Increased the protein expression levels of HO-1, NQO1, and GPX4 in a concentration-dependent manner with the biggest upregulation observed at 10 μ M and significantly increased the protein levels of HO-1, NQO1, and GPX4 reaching the maximum at 9h, 6 h, and 3 h, respectively $^{[1]}$.

In Vivo

AChE-IN-24 (compound 4c2) (oral; 0, 625, 1250, and 2500 mg/kg) is well tolerated and no toxicity in KM mice^[1]. AChE-IN-24 (7.5 mg/kg, 15 mg/kg and 30mg/kg; once) ameliorates cognitive deficit induced by Scopolamine, suggesting a practicable therapeutic effect on $AD^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	KM $mice^{[1]}$
Dosage:	0, 625, 1250, and 2500 mg/kg
Administration:	oral; 0, 625, 1250, and 2500 mg/kg
Result:	Not discovered abnormal behavior and acute toxicity were monitored for the first 4 h after administration, no acute neurological toxicities inclusive of tremor, convulsion, and death and no obvious signs of poisoning in the heart, liver, lungs, kidneys, and brain.
Animal Model:	The cognitive deficit mice $model^{[1]}$
Dosage:	7.5 mg/kg, 15 mg/kg and 30mg/kg
Administration:	7.5 mg/kg, 15 mg/kg and 30mg/kg; once
Result:	Reversed the step-down latency and number of errors in a concentration-dependent manner.

REFERENCES

[1]. Jie Guo, et al. A multi-target directed ligands strategy for the treatment of Alzheimer's disease: Dimethyl fumarate plus Tranilast modified Dithiocarbate as AChE inhibitor and Nrf2 activator. Eur J Med Chem. 2022 Aug 11;242:114630.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA