Proteins

SARS-CoV-2-IN-27

Cat. No.: HY-151271 Molecular Formula: C54H56O8P2 Molecular Weight: 894.97

SARS-CoV Target: Pathway: Anti-infection

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description SARS-CoV-2-IN-27 is a two-armed diphosphate ester with C6 alkyl and molecular tweezers with extended length. SARS-CoV-2-IN-27 exhibits antiviral activity with IC₅₀s of 1.0 μM and 1.7 μM against SARS-CoV-2 activity and the spike pseudoparticle transduction, respectively. SARS-CoV-2-IN-27 induces liposomal membrane disruption with an EC₅₀ value of 6.5 μ M^[1].

IC₅₀ & Target IC50: 6.5 μM (viral liposome, SARS-CoV-2)^[1]

In Vitro SARS-CoV-2-IN-27 (CP019) inhibits SARS-CoV-2 (IC $_{50}$ =1.7 μ M) with few cytotoxicity (Caco2 cells, CC $_{50}$ =208 μ M)^[1]. SARS-CoV-2-IN-27 (0-15 μ M; 2 h) inactivate SARS-CoV-2, shows inhibition against infection with an IC50 value of 1.0 μ M[1].

SARS-CoV-2-IN-27 suppresses varies enveloped viruses activity with IC₅₀s of 7.4 μM (respiratory syncytial virus, RSV), 112.6 μ M (influenza A virus, IAV), 4.6 μM (measles virus, MeV), 1.8 μM (herpes simplex viruses, HSV-1), respectively^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[1]

Cell Line:	Caco2 cells exposed with SARS-CoV-2 (2 h, 37 ₪)
Concentration:	0, 0.23, 0.93, 3.75, 15 μM
Incubation Time:	2 hours; determined infection rates on day 2
Result:	Inhibited SARS-CoV-2 infection activity to Caco2 cells.

In Vivo

SARS-CoV-2-IN-27 (CP019) (150 μ M, 50 μ L; intranasal route; for 2-5 d) shows antiviral activity in vivo against respiratory syncytial virus (RSV) and SARS-CoV-2 in BALB/cJ mice or K18-hACE2 mice, respectively^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Respiratory syncytial virus (RSV) infection of BALB/cJ mice and SARS-CoV-2 infection of K18-hACE2 mice $^{[1]}$
Dosage:	150 μΜ, 50 μL
Administration:	Intranasal route; single dose; sacrificed BALB/cJ mice on day 5; treated K18-hACE2 mice once again after 7 h and sacrificed mice on day 2

Poculty	Poduced viral load in the lungs of SARS CoV 2 infected mice
Result:	Reduced viral load in the lungs of SARS-CoV-2-infected mice.
	Completely abolished SARS-CoV-2 infection of all tested mice without changing body
	weight of mice.

REFERENCES

[1]. Tatjana Weil, et al. Advanced Molecular Tweezers with Lipid Anchors against SARS-CoV-2 and Other Respiratory Viruses. JACS Au 2022, XXXX, XXX, XXX-XXX.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com