Proteins

Antimicrobial agent-5

Cat. No.: HY-151399

Molecular Formula: $C_{32}H_{48}N_{16}$ **Molecular Weight:** 656.83 Bacterial Target:

Anti-infection Pathway:

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description

Antimicrobial agent-5 is an potent antimicrobial agent, and displays excellent cell selectivity against Gram-negative bacteria and Gram-positive bacteria. Antimicrobial agent-5 blocks the interaction between LPS and CD14/TLR4 receptor, and shows anti-inflammatory activity against LPS-induced inflammation^[1].

In Vitro

Antimicrobial agent-5 (compound 9) (0.5-32 μg/mL, 16 h; 1-128 μg/mL; 24 h) shows potent biofilm inhibitory (IC₅₀=2 μg/mL) and eradicating activities (IC₅₀=16 μg/mL) against multidrug-resistant Pseudomonas aeruginosa (MDRPA)^[1].

Antimicrobial agent-5 (5 µgmL, 20 µg/mL; 18 h) inhibits both the release and expression of nitric oxide (NO) and tumor necrosis factor- α (TNF- α) from LPS-stimulated (1 µg/mL) RAW 264.7 cells^[1].

Antimicrobial agent-5 exhibits proteolytic resistance and salt/serum stability $^{[1]}$.

Antimicrobial agent-5 (0.5-256 µg/mL; 2 h) exhibits negligible side effects against sheep red blood cells (sRBCs) with hemolytic activity (the minimum hemolytic concentration, MHC) of >256 $\mu g/mL^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[1]

Cell Line:	RAW264.7 cells
Concentration:	5 μg/mL, 20 μg/mL
Incubation Time:	18 hours
Result:	Decreased TNF- α release at 20 μ g/mL, with inhibition rate of 72.44%. Results reduction in the LPS-stimulated production of NO, with inhibition rate of 31.51%.
Cell Viability Assay ^[1]	
Cell Line:	E. coli [KCTC 1682], P. aeruginosa [KCTC 1637], S. epidermidis [KCTC 1917], S. aureus [KCTC1621]
Concentration:	1-128 μg/mL
Incubation Time:	24 hours
Result:	Inhibited Gram-negative bacteria and Gram-positive bacteria with IC ₅₀ of 6.1 μM (E. coli [KCTC 1682], P. aeruginosa [KCTC 1637], S. epidermidis [KCTC 1917], S. aureus [KCTC1621]), respectively.

REFERENCES		
[1]. Dinesh Kumar S, et al. Cationic, amphipathic small molecules based on a triazine-piperazine-triazine scaffold as a new class of antimicrobial agents. Eur J Med Cher 2022 Sep 8;243:114747.		
	Caution: Product has not been fully validated for medical applications. For research use only.	
	Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA	

Page 2 of 2 www.MedChemExpress.com