FXR antagonist 1

Cat. No.: HY-151481 CAS No.: 2295804-68-9 Molecular Formula: C₃₆H₅₉NO₅ Molecular Weight: 585.86 FXR Target:

Pathway: Metabolic Enzyme/Protease Storage: Powder

-20°C 3 years 4°C 2 years In solvent -80°C 6 months

> -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (170.69 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.7069 mL	8.5345 mL	17.0689 mL
	5 mM	0.3414 mL	1.7069 mL	3.4138 mL
	10 mM	0.1707 mL	0.8534 mL	1.7069 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 2.5 mg/mL (4.27 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: 2.5 mg/mL (4.27 mM); Clear solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description	FXR antagonist 1 (compound F6) is an orally active and selective intestinal FXR antagonist (IC_{50} =2.1 μ M). FXR antagonist 1 selectively inhibits intestinal FXR signalling through antagonism of intestinal FXR and feedback activation of hepatic FXR to improve hepatic steatosis, inflammation and fibrosis in NASH (nonalcoholic steatohepatitis) models. FXR antagonist 1 can be used in NASH studies ^[1] .
IC ₅₀ & Target	FXR 2.1 μM (IC ₅₀)
In Vitro	FXR antagonist 1 (0-100 μM; 24 h) shows FXR antagonistic activities in HEK293T cells ^[1] .

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay ^[1]		
Cell Line:	HEK293T cells (co-transfected with pCMV-Script-hFXR and pGL4.11-hSHP-Luciferase)	
Concentration:	0-100 μΜ	
Incubation Time:	24 h	
Result:	Exhibited FXR antagonistic activities with an IC $_{50}$ value of 2.1 $\mu\text{M}.$	

In Vivo

FXR antagonist 1 (10 mg/kg; p.o.; single daily for 12 weeks) reduces adiposity and improves glucose sensitivity and ameliorates the progress of NASH in GAN-diet-induced NASH mice $^{[1]}$.

FXR antagonist 1 (10 mg/kg; p.o.; single daily for 12 weeks) inhibits intestinal FXR Signaling but indirectly activates hepatic FXR signaling in GAN-diet-induced mice $^{[1]}$.

FXR antagonist 1 (3, 10, 30 mg/kg; p.o.; single daily for 4 weeks) dose-dependently alleviates NASH pathologies in HFMCD-diet-induced mice $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Adult male C57BL/6 mice (GAN (Gubra-amylin NASH)-diet induced NASH model) $^{[1]}$.		
Dosage:	10 mg/kg		
Administration:	Oral administration; single daily for 12 weeks.		
Result:	Reversed metabolic dysfunction in GAN-induced NASH mice.		
	Reduced GAN-diet-induced hepatic steatosis, injury, inflammation, and fibrosis.		
	Inhibited the hepatic mRNA expression involved in lipid metabolism, inflammatory		
	signaling, and fibrogenesis in GAN-diet-induced mice.		
	Significantly antagonized intestinal FXR signaling and bile acid reabsorption.		
Animal Model:	Adult male C57BL/6 mice (HFMCD-diet induced NASH model) ^[1] .		
Dosage:	3, 10, 30 mg/kg		
Administration:	Oral administration; single daily for 4 weeks.		
Result:	Significantly decreased serum ALT and AST levels at 30 mg/kg, and markedly lowered the		
	hepatic TG concentration in both 10 and 30 mg/kg.		
	Lowered hepatic hydroxyproline level.		

REFERENCES

[1]. Zhang C, et al. Discovery of Betulinic Acid Derivatives as Potent Intestinal Farnesoid X Receptor Antagonists to Ameliorate Nonalcoholic Steatohepatitis. J Med Chem. 2022 Sep 15.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA