Xanthine oxidoreductase-IN-4

Cat. No.: HY-151974 CAS No.: 1026587-58-5 Molecular Formula: $C_{16}H_{15}N_5O_2$ Molecular Weight: 309.32

Target: Xanthine Oxidase

Pathway: Metabolic Enzyme/Protease

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

Product Data Sheet

BIOLOGICAL ACTIVITY

Description	Xanthine oxidoreductase-IN-4 is an orally active xanthine oxidoreductase (XOR) inhibitor. Xanthine oxidoreductase-IN-4 has inhibitory activity against XOR with an IC $_{50}$ value of 29.3 nM. Xanthine oxidoreductase-IN-4 can be used for the research of hyperuricemia ^[1] .	
IC ₅₀ & Target	IC50: 29.3 nM (XOR) ^[1]	
In Vitro	Xanthine oxidoreductase-IN-4 (Compound IIIc) has inhibitory activity against XOR with an IC ₅₀ value of 29.3 nM ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
In Vivo	Xanthine oxidoreductase-IN-4 (Compound IIIc) (oral; 5 mg/kg) shows a significant hypouricemia effect in a potassium oxazinate/hypoxanthine-induced model of acute hyperuricemia ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
	Animal Model:	Mice acute hyperuricemia $model^{[1]}$
	Dosage:	5 mg/kg
	Administration:	Oral
	Result:	Reduced serum levels of uric acid significantly from 4 h after administration.

REFERENCES

[1]. Wen Peng, et al. Design, synthesis, and evaluation of tricyclic compounds containing phenyl-tetrazole as XOR inhibitors. Eur J Med Chem. 2022 Nov 28;246:114947.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com