Product Data Sheet

AChE/MAO-IN-1

Cat. No.: HY-152109 Molecular Formula: $C_{23}H_{26}N_{2}O_{3}$ Molecular Weight: 378.46

Cholinesterase (ChE); Monoamine Oxidase; Amyloid-β Target:

Neuronal Signaling Pathway:

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description	AChE/MAO-IN-1 (Compound D28) is a potent AChE, MAO-A and MAO-B inhibitor with IC $_{50}s$ of 0.0248, 0.0409 and 0.1108 μM
	against human AChE, MAO-B and MAO-A, respectively ^[1] .

IC₅₀ & Target hAChE hMAO-B hMAO-A hMAO-A

 $0.0248 \, \mu M \, (IC_{50})$ 0.0409 µM (IC₅₀) 0.1069 µM (Ki) $0.1108 \, \mu M \, (IC_{50})$

Αβ42

 $0.1467 \, \mu M \, (IC_{50})$

In Vitro AChE/MAO-IN-1 (Compound D28) shows antioxidant activity with an IC $_{50}$ of 0.210 \pm 0.010 μ M in the DPPH free-radical

scavenging activity test^[1].

AChE/MAO-IN-1 inhibits beta amyloid 1–42 (A β 42) with an IC₅₀ of 0.1467 \pm 0.0053 μ M^[1].

AChE/MAO-IN-1 (24 h) shows low cytotoxicity against NIH/3T3 cells (IC₅₀: 6.5162 \pm 0.1750 μ M)^[1].

AChE/MAO-IN-1 can very effectively bind to the active site of the MAO-A enzyme $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Cytotoxicity Assay^[1]

Cell Line:	NIH/3T3 mouse fibroblast healthy cell line
Concentration:	
Incubation Time:	24 h
Result:	Showed cytotoxicity with an IC $_{50}$ of 6.5162 \pm 0.1750 $\mu\text{M}.$

REFERENCES

[1]. Sağlık BN, et al. Design, Synthesis, and In Vitro and In Silico Approaches of Novel Indanone Derivatives as Multifunctional Anti-Alzheimer Agents. ACS Omega. 2022 Dec 7;7(50):47378-47404.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com