

Product Data Sheet

ML-SA5

 $\begin{tabular}{lll} \textbf{Cat. No.:} & HY-152182 \\ \begin{tabular}{lll} \textbf{CAS No.:} & 2418670-70-7 \\ \begin{tabular}{lll} \textbf{Molecular Formula:} & $C_{19}H_{24}ClN_3O_4S_2$ \\ \end{tabular}$

Molecular Weight: 457.99

Target: TRP Channel

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: 4°C, sealed storage, away from moisture and light

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 125 mg/mL (272.93 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.1835 mL	10.9173 mL	21.8345 mL
	5 mM	0.4367 mL	2.1835 mL	4.3669 mL
	10 mM	0.2183 mL	1.0917 mL	2.1835 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (4.54 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (4.54 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	ML-SA5 is a potent TRPML1 cation channel agonist that activates the entire endosomal TRPML1 (ML1) current in DMD myocytes with an EC ₅₀ of 285 nM and is more potent than ML-SA1. ML-SA5 has anticancer activity and can inhibit tumour growth ^[1] .
In Vitro	ML-SA5(1-100 μ M, 24 h) has some cell-targeting specificity and induces substantial cell death in M12 and MeWo cells, but fully preserves normal melanocytes. It also causes a loss of mitochondrial membrane potential in M12 cells ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	ML-SA5 (i.p., 2-5 mg/kg, daily, 2 weeks) reduces muscle necrosis in MDX mice by more than 70% and reduces central nucleated fibers, suggesting that ML-SA5 can improve muscle atrophy in mdx mice in vivo by promoting myosin repair, but has no effect in ML1 knockout mice. Moreover, ML-SA5 reduces skeletal and cardiac muscle damage in mdx mice through

MI 1	upregi	ulation	[2]
IAILT	upicgi	utatioi	

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Wanlu Du, et al. Lysosomal Zn2+ release triggers rapid, mitochondria-mediated, non-apoptotic cell death in metastatic melanoma. Cell Rep. 2021 Oct 19;37(3):109848.

[2]. Lu Yu, et al. Small-molecule activation of lysosomal TRP channels ameliorates Duchenne muscular dystrophy in mouse models. Sci Adv. 2020 Feb 7;6(6):eaaz2736.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com