HDAC-IN-56

®

MedChemExpress

Cat. No.: CAS No.: Molecular Formula: Molecular Weight: Target: Pathway: Storage:	HY-154855 2814571-89-4 C ₂₈ H ₂₈ FN ₅ O ₂ 485.55 HDAC Cell Cycle/DNA Damage; Epigenetics Please store the product under the recommended conditions in the Certificate of Analysis.	N N N N N N N N N N N N N N N N N N N
---	---	---------------------------------------

BIOLOGICAL ACT							
		х у п				1 (500×00)	
Description	HDAC-IN-56 ((S)-17E 422.2 ± 105.1, >1000 while strongly incre apoptosis.HDAC-IN-	0 nM for HDAC1, H asing intracellula	HDAC2, HDAC3, and r levels of acetylhis	HDAC4-11, respec	tively. HDAC-IN-56	has potent inhibito	ry activity
IC ₅₀ & Target	HDAC1 56.0 nM (IC ₅₀)	HDA 90.0	C2 nM (IC ₅₀)	HDAC3 422.2 nM	(IC ₅₀)		
In Vitro	HDAC-IN-56 shows p HDAC-IN-56 (0.1 µM differences and was HDAC-IN-56 (0.01-1 HDAC-IN-56 (0.01-1 than that of Tucidin HDAC-IN-56 has an I HDAC-IN-56 (0.1 µM differences and was HDAC-IN-56 (0.01-1 HDAC-IN-56 (0.01-1 than that of Tucidin HDAC-IN-56 has an I HDAC-IN-56 (computed HDAC-IN-56 (computed)	, 2 h) is metaboliz stable in five spe μ M, 72 h) effective μ M, 72 h) treatme ostat (HY-109015) C ₅₀ of 139.0 ± 8.0 potent and selection , 2 h) is metaboliz stable in five spe μ M, 72 h) effective μ M, 72 h) treatme ostat (HY-109015) C ₅₀ of 139.0 ± 8.0 rond (S)-17b) Metaboliz	ed in human, monk cies of hepatocytes ely induces G1 cell of or MS-275 (HY-121 nM for SKM-1 ^[1] . ve inhibition again ed in human, monk cies of hepatocytes ely induces G1 cell of int increases the int or MS-275 (HY-121 nM for SKM-1 ^[1] . abolic Stability in H	key, dog, rat and mo [1]. cycle arrest and apo tracellular level of a .63), which implied st Class I HDACs 1, 2 key, dog, rat and mo [1]. cycle arrest and apo tracellular level of a .63), which implied	buse hepatocytes v optosis ^[1] . acetyl-histone H3 a its strong class I hi 2, and 3, better tha buse hepatocytes v optosis ^[1] . acetyl-histone H3 a its strong class I hi	with significant spec nd p21 simultaneou stone deacetylase in n that of MS-275 (H ¹ with significant spec nd p21 simultaneou stone deacetylase in	cies usly better nhibition ^[1] . Y-12163) ^[1] . cies usly better nhibition ^[1] .
	(S)-17b-120 min	132390 (299)	118399 (300)	133963 (347)	133098 (347)	143377 (349)	
	(S)-17b-0 h	129174 (293)	107142 (267)	150514 (395)	136550 (350)	156075 (392)	

Product Data Sheet

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Cycle Analysis^[1]

Cell Line:	SKM-1
Concentration:	0.01, 0.1, 1 μΜ
Incubation Time:	72 h
Result:	Downregulated the expression of c-Myc and CDK4 at 0.1 μM , which is better than MS-275 (HY-12163) or Tucidinostat (HY-109015).

Apoptosis Analysis^[1]

Cell Line:	SKM-1
Concentration:	0.01, 0.1, 1 μM
Incubation Time:	72 h
Result:	Triggered strong apoptosis as determined by Annexin V/PI staining, stronger than MS-275 (HY-12163) or Tucidinostat (HY-109015).

Western Blot Analysis^[1]

Cell Line:	SKM-1
Concentration:	0.01, 0.1, 1 μΜ
Incubation Time:	72 h
Result:	Increased the intracellular level of acetyl-histone H3 and p21 simultaneously better than that of Tucidinostat (HY-109015) or MS-275 (HY-12163).

In Vivo

HDAC-IN-56 (10-80 mg/kg/d, p.o., one month) cause no significant change of body weight, even at high dose of 80 mg/kg per day, the mice can tolerate with the descended body weight compared with the control^[1].

HDAC-IN-56 (SD: 10, 20 mg/kg ; ICR: 20, 40 mg/kg, p.o.) represent a favorable pharmacokinetic profile with an oral bioavailability of 47.7% in ICR mice and 39.5% in SD rat, respectively^[1].

HDAC-IN-56 (20-60 mg/kg, p.o.) inhibit the tumor growth of MC38 cells in nude mice as expected, when inoculate in immunocompetent C57BL/6 mice show more significant tumor growth inhibition at the same doses, which implie that the immune system may be engaged and somehow activated gain stronger antitumor effect^[1]. In vivo pharmacokinetics of HDAC-IN-56 (compuond (S)-17b) in ICR mice and SD rat^[1]

ICR mice	SD rat
(S)- dose CL V _{ss} T _{1/2} AUC _{0-t} C _r 17b (mg/kg)(mL/min/kg)(L/kg) (h) (h x (ng, ng/mL)	$ \begin{array}{cccc} & \text{max} & T_{\text{max}} & F(\%) \\ \text{(mL)} & (h) \end{array} & \begin{array}{c} \text{dose} & CL & V_{\text{ss}} & T_{1/2} & \begin{array}{c} AUC_{0\text{-}t} & T & F \\ & (h \ x & C_{\text{max}} & F \end{array} \\ & (h \ x & (mg/mL) \overset{\text{max}}{(h)} & (\%) \\ & ng/mL \end{array} & \begin{array}{c} ng/mL & (mg/mL) & (h) \end{array} \end{array} $
iv 20 64.4 ± 10.3 $5.3 \pm 3.6 \pm 5269 \pm 1.2$ 0.3 924	10 34.3 \pm 8.6 4.1 \pm 1.5 \pm 4935 \pm 0.8 0.2 1068

	2.5 ± 5031 ± 1963 ± 0.83	2.3 ± 3895 ± 1086 ±	
ро	40	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.6 141 16 2.0039.5

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male SD rats or ICR mice $^{[1]}$
Dosage:	10, 20 mg/kg ; ICR: 20, 40 mg/kg
Administration:	Male SD rats or ICR mice (n = 6) were fasted for 12 h before administration and remained fasting for 2 h. SD rats were received 10 and 20 mg/kg via intravenously injection (iv) and oral administration (po), respectively, and ICR mice were received 20 and 40 mg/kg via intravenously injection (iv) and oral administration (po), respectively.
Result:	Epresented a favorable pharmacokinetic profile with an oral bioavailability of 47.7% in ICR mice and 39.5% in SD rat, respectively
Animal Model:	SKM-1 or MC-38 cells xenograft model ^[1]
Dosage:	20, 40, 60 mg/kg
Administration:	Oral gavage (p.o.).
Result:	Inhibited the tumor growth of MC38 cells in nude mice. Showed more significant tumor growth inhibition at the same doses, which implie that the immune system may be engaged and somehow activated HDAC-IN-56 to gain stronger antitumor effect.

REFERENCES

[1]. Li D, et al. Discovery of (S)-N-(2-Amino-4-fluorophenyl)-4-(1-(3-(4-((dimethylamino)methyl)phenyl)-6-oxopyridazin-1(6H)-yl)ethyl) benzamide as Potent Class I Selective HDAC Inhibitor for Oral Anticancer Drug Candidate. J Med Chem. 2023 May 25;66(10):7016-7037.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA