MMP-13-IN-1

R

MedChemExpress

Cat. No.: CAS No.: Molecular Formula: Molecular Weight: Target: Pathway: Storage:	HY-154868 2925249-49-4 C ₁₉ H ₁₆ F ₃ N ₃ O ₃ 391.34 MMP Metabolic Enzyme/Protease Please store the product under the recommended conditions in the Certificate of Analysis.	F H H H N H H N H H N H H N H H N H H H H H H H H H H
---	---	---

BIOLOGICAL ACTIVITY			
Description	MMP-13-IN-1 is a potent and selective inhibitor of MMP-13 with a IC ₅₀ value of 16 nM. MMP-13-in-1 can be used for atherosclerosis research ^[1] .		
IC ₅₀ & Target	MMP13 16 nM (IC ₅₀)		
In Vivo	MMP-13-IN-1 (compound 5j) (2.5 mg/kg; i.v., 15 min before the use of the radiotracer) shows low uptake in metabolic organs with minimal retention of myocardial radioactivity, substantialrenal clearance, and high metabolic stability in ApoE ^{-/-} mice models ^[1] . .MMP-13-IN-1 (compound 5j) (2.5 mg/kg; i.v., 15 min before the use of the radiotracer) displays the highest overall uptake and the greatest colocalization to ORO-positive regions ^[1] MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	ApoE ^{-/-} mice models ^[1]	
	Dosage:	2.5 mg/kg	
	Administration:	Intravenous injection (i.v.); intravenously administered 15 min prior to the radiotracer	
	Result:	Blood radioactivity continued to decrease between 30 and 60 min and stabilized thereafter. Displayed a significant reduction in liver uptake. Relatively low levels of radioactivity were observed in all other measured organs except for the pancreas and spleen. Resulted in a 23% decrease in aortic plaque uptake , indicating an extent of saturable binding.	

REFERENCES

[1]. Buchler A, et al. Quinazoline-2-Carboxamides as Selective PET Radiotracers for Matrix Metalloproteinase-13 Imaging in Atherosclerosis. J Med Chem. 2023 May 25;66(10):6682-6696.

Product Data Sheet

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA