DDAN-MT

Cat. No.: Molecular Formula: Molecular Weight: Target: Pathway: Storage:	HY-155395 C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂ S 438.37 Others Others Please store the product under the recommended conditions in the Certificate of Analysis.	S S O N N CI O N CI CI CI CI CI CI CI CI CI CI CI CI CI
---	--	---

BIOLOGICAL ACTIVITY	
Description	DDAN-MT is an enzymatic activated near-infrared fluorescent probe. DDAN-MT can be used for rapid, highly selective, and real-time monitoring of endogenous MtMET-AP1 activity in M. tuberculosis ^[1] .

REFERENCES

[1]. Zhang M, et al. Discovery of Potential Antituberculosis Agents Targeted Methionine Aminopeptidase 1 of Mycobacterium tuberculosis by the Developed Fluorescent Probe. Anal Chem. 2023 Nov 7;95(44):16210-16215.

Caution: Product has not been fully validated for medical applications. For research use only.

Product Data Sheet **Screening Libraries**

Inhibitors

•

•

Proteins