Product Data Sheet

Taltobulin

Cat. No.: HY-15584

CAS No.: 228266-40-8

Molecular Formula: C₂₇H₄₃N₃O₄

Molecular Weight: 473.65

Target: Microtubule/Tubulin; ADC Cytotoxin; Apoptosis

Pathway: Cell Cycle/DNA Damage; Cytoskeleton; Antibody-drug Conjugate/ADC Related;

Apoptosis

In solvent

Storage: Powder -20°C 3 years

4°C 2 years -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO : ≥ 100 mg/mL (211.13 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.1113 mL	10.5563 mL	21.1126 mL
	5 mM	0.4223 mL	2.1113 mL	4.2225 mL
	10 mM	0.2111 mL	1.0556 mL	2.1113 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.28 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (5.28 mM); Clear solution
- Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.28 mM); Clear solution
- 4. Add each solvent one by one: 5% DMSO >> 40% PEG300 >> 5% Tween-80 >> 50% saline Solubility: ≥ 2.5 mg/mL (5.28 mM); Clear solution
- 5. Add each solvent one by one: 5% DMSO >> 95% (20% SBE- β -CD in saline) Solubility: \geq 2.5 mg/mL (5.28 mM); Clear solution
- 6. Add each solvent one by one: 1% DMSO >> 99% saline Solubility: ≥ 0.5 mg/mL (1.06 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Taltobulin (HTI-286), a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Taltobulin inhibits the polymerization of purified tubulin, disrupts microtubule organization in cells, and induces mitotic arrest, as well as apoptosis ^[1] .				
IC ₅₀ & Target	Traditional Cytotoxic Agents				
In Vitro	Taltobulin (HTI-286; 0.2-7.3 nM; 3 days) inhibits the growth of 18 tumor cell lines (leukemia, ovarian, NSCLC, breast, colon, and melanoma cell lines) with an average IC ₅₀ of 2.5±2.1 nM and a median value of 1.7 nM ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Proliferation Assay ^[1]				
	Cell Line:	Leukemia CCRF-CEM cell line; ovarian 1A9 cell line; NSCLC A549 and NCI-H1299 cell lines; breast MX-1W and MCF-7 cell lines; colon HCT-116, DLD-1, Colo205, KM20, SW620, S1, HCT-15 and Moser cell lines; melanoma A375, Lox and SK-Mel-2 cell lines			
	Concentration:	0.2-7.3 nM			
	Incubation Time:	3 days			
	Result:	Inhibited the growth of tumor cell lines with IC $_{50}$ s of 0.2±0.03 nM (for leukemia CCRF-CEM cell line), 0.6±0.1 nM (for ovarian 1A9 cell line), 1.1±0.5 and 6.8±6.1 nM (for NSCLC A549 and NCI-H1299 cell lines), 1.8±0.6, 7.3±2.3 nM (for breast MX-1W, MCF-7 cell lines), 0.7±0.2, 1.1±0.4, 1.5±0.6, 1.8±0.6, 3.6±0.8, 3.7±2.0, 4.2±2.5, and 5.3±4.1 nM (for colon HCT-116, DLD-1, Colo205, KM20, SW620, S1, HCT-15, and Moser cell lines), 1.1±0.8, 1.4±0.6 and 1.7±0.5 nM (for melanoma A375, Lox and SK-Mel-2 cell lines).			
In Vivo	Taltobulin (HTI-286; 1.6 mg/kg i.v.) inhibits the growth of human tumor xenografts (e.g., HCT-15, DLD-1, MX-1W, and KB-8-5) in athymic nu/nu female mice ^[1] . Taltobulin (HTI-286; 3 mg/kg; p.o. gavage) inhibits growth by 97.3 % and 82% in athymic nu/nu female mice with Lox melanoma xenografts and KB-3-1 epidermoid xenograft model, respectively ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
	Animal Model:	Athymic nu/nu female mice with Lox melanoma model (5-6 weeks of age) $^{[1]}$			
	Dosage:	1.6 mg/kg			
	Administration:	Administered i.v.;for 35 days			
	Result:	Growth of Lox tumors was inhibited by 96-98% on day 12 compared with vehicle-treated controls. Growth of KB-8-5 tumors was inhibited by 84% on day 14 compared with vehicle-treated controls. Growth of MX-1W tumors was inhibited by 97% compared with vehicle-treated controls. Growth of DLD-1 and HCT-15 tumors was inhibited by 80 and 66%, respectively.			

CUSTOMER VALIDATION

• PLoS Negl Trop Dis. 2020 May 26;14(5):e0007942.

See more customer validations on $\underline{www.\mathsf{MedChemExpress.com}}$

REFERENCES					
[1]. Loganzo F, et al. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance vitro and in vivo. Cancer Res. 2003 Apr 15;63(8):1838-45.					
	Cautian, Draduct has not h		dical applications. For resea	web was and	
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChem		
			uth Junction, NJ 08852, USA	Expressioni	

Page 3 of 3 www.MedChemExpress.com