AZD2858

Cat. No.: HY-15761
CAS No.: 486424-20-8
Molecular Formula: C_{21}H_{23}N_{7}O_{3}S
Molecular Weight: 453.52
Target: GSK-3
Pathway: PI3K/Akt/mTOR; Stem Cell/Wnt
Storage: Powder:
-20°C: 3 years
4°C: 2 years
In solvent:
-80°C: 6 months
-20°C: 1 month

SOLVENT & SOLUBILITY

In Vitro:

DMSO: 12.5 mg/mL (27.56 mM; Need ultrasonic)

<table>
<thead>
<tr>
<th>Solvent Concentration</th>
<th>Mass (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mg</td>
<td>2.2050 mL</td>
</tr>
<tr>
<td>5 mg</td>
<td>11.0249 mL</td>
</tr>
<tr>
<td>10 mg</td>
<td>22.0497 mL</td>
</tr>
<tr>
<td>1 mM</td>
<td>2.2050 mL</td>
</tr>
<tr>
<td>5 mM</td>
<td>2.2050 mL</td>
</tr>
<tr>
<td>10 mM</td>
<td>2.2050 mL</td>
</tr>
</tbody>
</table>

In Vivo:

1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline
 Solubility: 1.25 mg/mL (2.76 mM); Suspended solution; Need ultrasonic

2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)
 Solubility: ≥ 1.25 mg/mL (2.76 mM); Clear solution

BIOLOGICAL ACTIVITY

Description:
AZD2858 is a potent, orally active GSK-3 inhibitor, with IC_{50}s of 0.9 and 5 nM for GSK-3α and GSK-3β, respectively, used in the research of fracture healing.

<table>
<thead>
<tr>
<th>IC_{50} & Target</th>
<th>GSK-3α (0.9 nM (IC_{50}))</th>
<th>GSK-3β (5 nM (IC_{50}))</th>
<th>CDK5/p25 (356 nM (IC_{50}))</th>
<th>Haspin (366 nM (IC_{50}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDK5/p35 (387 nM (IC_{50}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DYRK2 (491 nM (IC_{50}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDK2/cyclin A (810 nM (IC_{50}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDK1/cyclin B (1246 nM (IC_{50}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In Vitro AZD2858 (1 μM) increases β-catenin levels after a short period of time in human osteoblast cells. AZD2858 inhibits GSK-3β dependent phosphorylation with an IC$_{50}$ of 68 nM. AZD2858 (10 nM) has no effect on β-catenin levels2. AZD2858 increases TAZ expression and osterix expression both by 1.4-fold, with EC$_{50}$ of 440 nM and 1.2 μM, respectively, in hADSC. AZD2858 also induces a marked increase in osteogenic mineralisation in hADSC3. AR28 (AR28) demonstrates from 70- to greater than 6000-fold selectivity over a panel of other kinases and an IC$_{50}$ of 5 nM. AR28 inhibits GSK-3 in murine cells and indicates activation of the canonical Wnt/β-catenin signaling cascade. AR28 (50, 10, and 1 nM) enhances the clonogenic ability of mesenchymal progenitors with osteogenic and adipogenic potential. AR28 (50 μM) also enhances the differentiation ability of mesenchymal progenitors to the osteogenic but not adipogenic lineage in vitro4.

In Vivo AZD2858 (20 mg/kg) causes a dose-dependent increase in trabecular bone mass compared to control after a two-week treatment with a maximum effect1. AZD2858 exhibits a substantial effect on fracture healing. AZD2858 (20 mg/kg) causes an increase in cortical BMC of 9%, cortical area of 10%, and cortical thickness of 11% at 3 weeks in the non-operated right femur of rats2. AZD2858 (30 μmol/kg/day) alters the biomarkers of bone turnover with statistically significant increases in P1NP and decreases in TRAcP-5b seen from 3 days of treatment and onwards. AZD2858 demonstrates significant changes in serum bone turnover markers (P1NP and TRAcP-5b) and femur bone formation after only 7 days of daily dosing3. AZD2858 (AR28, 30 mg/kg, s.c.) stimulates an increase in an initial wave of mesenchymal progenitors with osteogenic and adipogenic potential and drives their differentiation to the osteogenic lineage in BALB/c mice. AR28 (30 mg/kg, s.c.) enhances the proliferation of committed hematopoietic progenitors and their differentiation to the osteoclast lineage but does not prevent an overall increase in bone mass4.

PROTOCOL

Kinase Assay3 The potency of compounds at GSK-3β and cyclin-dependent protein kinase 2 (CDK2, kinase with closest homology to GSK-3β) is assessed using Z-LYTE™ Kinase assay kit in the presence of 7 and 80 μM ATP respectively. A ratiometric method is used to calculate the ratio of donor emission (445 nm) to acceptor emission (520 nm) after excitation of the donor fluorophore at 400 nm to quantitate the reaction progress. Kinase selectivity with AR79, AZD2858 and AZ13282107 are determined using the KinaseProfiler Service or University of Dundee Kinase. Over 80 different kinases are assessed at a single concentration of 1 or 10 μM of AR79, AZD2858 and AZ13282107. Concentration-inhibition 10-point curves to compounds that show activity are constructed to determine pIC$_{50}$ estimations. Also, in some kinase assays these pIC$_{50}$ estimations are converted to binding affinity values (pK$_i$) using the Cheng-Prussoff equation to correct for the concentration of ATP used3.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration1 Each rat is dosed orally with vehicle or AZD2858 using a plastic gavage tube. The dose volume is 10 mL/kg. The vehicle consists of deionized water adjusted to pH 3.5±0.1. Formulations are adjusted to pH 3.5±0.1. The doses are 0, 0.2, 2 or 20 mg/kg respectively and administered either twice daily (TD), once daily (OD), every other day (O/2D), or every fourth day (O/4D) for 14 days. In total, the protocol results in 13 groups with 8 animals in each group (104 animals). At 7 days after the start of the study, and again 2 days prior to the scheduled terminal necropsy, each animal is injected subcutaneously with a bicarbonate buffered calcein solution (8 mg/kg, 1 mL/kg)3. MCE has not independently confirmed the accuracy of these methods. They are for reference only.
REFERENCES

Caution: Product has not been fully validated for medical applications. For research use only.
Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA