Product Data Sheet

Trilexium

Cat. No.: HY-157800

CAS No.: 1983180-82-0

Molecular Formula: C₂₄H₂₃FO₆

Molecular Weight: 426.43

Target: Apoptosis; PARP; Caspase; Microtubule/Tubulin

Pathway: Apoptosis; Cell Cycle/DNA Damage; Epigenetics; Cytoskeleton

Storage: -20°C, protect from light

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 300 mg/mL (703.52 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.3451 mL	11.7253 mL	23.4505 mL
	5 mM	0.4690 mL	2.3451 mL	4.6901 mL
	10 mM	0.2345 mL	1.1725 mL	2.3451 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 5 mg/mL (11.73 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 5 mg/mL (11.73 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Trilexium (TRX-E-009-1) is a third-generation of benzopyran structurally related to TRX-E-002-1 (HY-114250). Trilexium increases p21 protein expression and induces apoptosis. Trilexium depolymerizes microtubules. Trilexium shows broad anti-cancer activity^{[1][2]}.

In Vitro

Trilexium shows activity against a broad range of cancer types. Of the 240 cell lines assessed in the Eurofin's Oncopanel, 10 cell lines shows $IC_{50} > 30 \,\mu\text{M}$, of the remaining 230 cell lines, the average IC_{50} is $0.428 \,\mu\text{M}^{[1]}$.

Trilexium (300 nM, 4 h) disrupts microtubule networks in Hela cells^[1].

 $Trilexium~(1-5~\mu\text{M})~leads~to~increased~protein~expression~of~p21,~c-PARP,~and~c-Caspase~3~in~HSJD-DIPG007~cells^{[2]}.$ $Trilexium~(0-2~\mu\text{M})~restores~H3K27~trimethylation~and~increases~H3K27~acetylation~in~HSJD-DIPG007~cells^{[2]}.$

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

In Vivo

Trilexium (5-60 mg/kg, IV daily for 15 days) significantly reduces tumour volume in vivo $^{[1]}$. Trilexium (80 mg/kg, IV daily for 5 days) disrupts microtubules in vivo $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	C57/BL6 mice (n = 8 mice per group, subcutaneous mouse xenograft model of BRAF mutant (BRAFV600E) melanoma (A375)) ^[1]		
	mutant (brarvoode) metanoma (AS75))*-3		
Dosage:	5 and 60 mg/kg		
Administration:	IV (tail vein injection), daily for 15 days		
Result:	Resulted in a tumour growth inhibition at 60 mg/kg. Significantly improved survival at 60 mg/kg.		
Animal Model:	A375 xenografts mice $^{[1]}$.		
Dosage:	80 mg/kg		
Administration:	IV, daily for 5 days		
Result:	Resulted in a loss of the long microtubule filaments in favour of shorter filaments and		
	dispersed tubulin staining.		

REFERENCES

[1]. Stevenson AJ, et al. Mechanism of action of the third generation benzopyrans and evaluation of their broad anti-cancer activity in vitro and in vivo. Sci Rep. 2018 Mar 23;8(1):5144.

[2]. Ehteda A, et al. Microtubule-Targeting Combined with HDAC Inhibition Is a Novel Therapeutic Strategy for Diffuse Intrinsic Pontine Gliomas. Mol Cancer Ther. 2023 Dec 1;22(12):1413-1421.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA