AChE-IN-48

Cat. No.: Molecular Formula: Molecular Weight: Target: Pathway: Storage:	HY-162005 C ₁₉ H ₂₆ N ₄ OS 359 Cholinesterase (ChE) Neuronal Signaling Please store the product under the recommended conditions in the Certificate of Analysis.	$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
---	---	---

BIOLOGICAL ACTIVITY		
Description	AChE-IN-48 (compound 16) is AChE inhibitor ,with the IC ₅₀ of 41.87 μM. AChE-IN-48 can be used for Alzheimer's disease study ^[1] .	
	[±].	

REFERENCES

[1]. Begum F, et al. Inhibition of Acetylcholinesterase with Novel 1, 3, 4, Oxadiazole Derivatives: A Kinetic, In Silico, and In Vitro Approach. ACS Omega. 2023;8(49):46816-46829. Published 2023 Nov 27.

Caution: Product has not been fully validated for medical applications. For research use only.

Product Data Sheet