Miglustat

Cat. No.:	HY-17020	
CAS No.:	72599-27-0	HC
Molecular Formula:	C ₁₀ H ₂₁ NO ₄	
Molecular Weight:	219.28	HO,,,,
Target:	Glucosylceramide Synthase (GCS)	
Pathway:	Neuronal Signaling	HO
Storage:	4°C, stored under nitrogen	
	* In solvent : -80°C, 6 months; -20°C, 1 month (stored under nitrogen)	

SOLVENT & SOLUBILITY

	Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
		1 mM	4.5604 mL	22.8019 mL	45.6038 mL
		5 mM	0.9121 mL	4.5604 mL	9.1208 mL
		10 mM	0.4560 mL	2.2802 mL	4.5604 mL

BIOLOGICAL ACTIV	ІТҮ		
Description	0	ynojirimycin) is an orally active and reversible ceramide glucosyltransferase inhibitor. Miglustat can h of type I gaucher disease ^[1] .	
In Vitro	Miglustat (200 μM; 2, 4 and 24 h) restores F508del-CFTR (cystic fibrosis transmembrane conductance regulator) function in cystic fibrosis (CF) bronchial epithelial IB3-1 and CuFi-1 cells. Miglustat reduces the inflammatory response to P. aeruginosa in both CF and non-CF bronchial cells ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	to counteract hyperexc	ral administration; once) is able to rescue synaptic plasticity deficits, to restore ERKs activation and citability ^[2] . ently confirmed the accuracy of these methods. They are for reference only. NPC1-/- mice ^[1] 0.2 mg/kg	

Product Data Sheet

Ν

Ь ОН

HO

Administration:	Oral administration; once
Result:	Was able to rescue synaptic plasticity deficits, to restore ERKs activation and to counter hyperexcitability.

CUSTOMER VALIDATION

- Cell. 2019 Dec 12;179(7):1483-1498.e22.
- Cell Rep. 2022 Jul 5;40(1):111049.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Maria Cristina Dechecchi, et al. Anti-inflammatory effect of miglustat in bronchial epithelial cells. J Cyst Fibros. 2008 Nov;7(6):555-65.

[2]. G D'Arcangelo, et al. Miglustat Reverts the Impairment of Synaptic Plasticity in a Mouse Model of NPC Disease. Neural Plast. 2016:2016:3830424.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA