Cisplatin

Cat. No.: HY-17394
CAS No.: 15663-27-1
Molecular Formula: Cl₂H₆N₂Pt
Molecular Weight: 300.05
Target: DNA Alkylator/Crosslinker; Ferroptosis
Pathway: Cell Cycle/DNA Damage; Apoptosis
Storage: 4°C, protect from light

* The compound is unstable in solutions, freshly prepared is recommended.

SOLVENT & SOLUBILITY

In Vitro
DMF : 14.17 mg/mL (47.23 mM; Need ultrasonic and warming; DMSO can inactivate Cisplatin's activity)
H₂O : 1 mg/mL (3.33 mM; Need ultrasonic and warming; DMSO can inactivate Cisplatin's activity)

Preparing Stock Solutions

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Mass</th>
<th>1 mg</th>
<th>5 mg</th>
<th>10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMF</td>
<td>1 mM</td>
<td>3.3328 mL</td>
<td>16.6639 mL</td>
<td>33.3278 mL</td>
</tr>
<tr>
<td></td>
<td>5 mM</td>
<td>0.6666 mL</td>
<td>3.3328 mL</td>
<td>6.6656 mL</td>
</tr>
<tr>
<td></td>
<td>10 mM</td>
<td>0.3333 mL</td>
<td>1.6664 mL</td>
<td>3.3328 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

In Vivo
1. Cisplatin is prepared in sterile normal saline (NS)[6].

BIOLOGICAL ACTIVITY

Description
Cisplatin is a antineoplastic chemotherapy drug which works by cross-linking with DNA and causing DNA damage in cancer cells.

IC₅₀ & Target
DNA Alkylator/Crosslinker[1]

In Vitro
Cisplatin (CDDP) causes apoptosis of HeLa cells in a dose-dependent manner, with a concentration of 30 μM Cisplatin resulting in death of greater than 90% of the cell population by 24 h of treatment. The kinetics of Cisplatin-induced apoptosis are examined using a 30 μM concentration. Cisplatin Activates the MEK/ERK Signaling Pathway, 20 and 30 μM Cisplatin, both of which results in significant apoptosis, leads to strong activation of ERK[1]. Cisplatin (50 μM) produces time-dependent apoptosis in renal proximal tubular cell (RPTCs), causing cell shrinkage, a 50-fold increase in caspase 3 activity, a 4-fold increase in phosphatidylserine externalization, and 5- and 15-fold increases in chromatin condensation and DNA hypoploidy, respectively[2].
In Vivo

In melanoma-bearing mice, Cisplatin (4 mg/kg B.W.) reduces the size and weight of the solid tumors, and HemoHIM supplementation with Cisplatin enhances the decrease of both the tumor size and weight[^3]. Cisplatin administration results in significant increases in the kidney weight as a percentage of the total body weight, urine volume, serum creatinine, and blood urea nitrogen by about 132, 315, 797, and 556% in comparison with the control rats, respectively[^4].

PROTOCOL

Cell Assay[^1]

HeLa and A549 cells are maintained in Dulbecco’s modified Eagle's medium supplemented with 10% fetal bovine serum, 100 units of Penicillin, and 100 μg of Streptomycin/mL. They are cultured at 37°C in a humidified chamber containing 5% CO₂. For the induction of apoptosis, cells are plated in 60-mm dishes 1 day prior to Cisplatin (0-30 μM) treatment[^1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration[^3][^4]

Mice[^3]

Mice are divided randomly into three groups (Control, Cisplatin and Cisplatin+HemoHIM), and each group consists of twenty mice. B16F0 melanoma (5×10⁵ cells/mouse) is inoculated into subcutaneous femoral left region of mice at 3 days before an initial injection of Cisplatin. Cisplatin is injected intraperitoneally at 4 mg/kg body weight (B.W.) on day 0, 7 and 14 (total three injections). Experimental group is intubated with HemoHIM at a final concentration of 100 mg/kg B.W. by everyday from day -1 to day 16, while the control group received only water. On day 17 after initial injection of Cisplatin, all mice of each group are experimented, respectively, to evaluate tumor weight or tumor size. The tumor size is calculated as follows: tumor size=ab²/2, where a and b are the larger and smaller diameters, respectively.

Rats[^4]

Male Sprague-Dawley rats weighing 200 to 250 g are divided at random into 4 groups of 4 or 5 animals each. The first group (control) received a vehicle (5% carboxymethyl cellulose sodium solution (CMC-Na), 5 mL/kg body wt., p.o.) used for Capsaicin (Cap). The second group received Cap (10 mg/kg/d, p.o.) in 5% CMC-Na (5 mL/kg), and the third received 5% CMC-Na for 6 consecutive days injected with Cisplatin (5 mg/kg in physiological saline solution, i.p.). The fourth group received Cap (10 mg/kg/d, p.o.) in 5% CMC-Na for 6 consecutive days after Cisplatin injection (5 mg/kg, i.p.). For all groups, Cap or vehicle is given twice daily. The selected Cap concentration and the dose administration schedule without inducing any rat intestinal damage are chosen using data from our preliminary experiments.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

- **Cancer Discov.** 2017 Sep;7(9):984-998.
- **Cancer Res.** 2018 Oct 1;78(19):5694-5705.

See more customer validations on www.MedChemExpress.com

