Conivaptan hydrochloride

Cat. No.: HY-18347A
CAS No.: 168626-94-6
Molecular Formula: C$_{32}$H$_{27}$ClN$_{4}$O$_{2}$
Molecular Weight: 535.04
Target: Vasopressin Receptor
Pathway: GPCR/G Protein
Storage: 4°C, protect from light
* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro

<table>
<thead>
<tr>
<th>Preparing Stock Solutions</th>
<th>DMSO: \geq 100 mg/mL (186.90 mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"\geq" means soluble, but saturation unknown.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Solvent Concentration</td>
<td>Mass</td>
</tr>
<tr>
<td></td>
<td>1 mg</td>
</tr>
<tr>
<td></td>
<td>5 mg</td>
</tr>
<tr>
<td></td>
<td>10 mg</td>
</tr>
<tr>
<td>1 mM</td>
<td>1.8690 mL</td>
</tr>
<tr>
<td>5 mM</td>
<td>0.3738 mL</td>
</tr>
<tr>
<td>10 mM</td>
<td>0.1869 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO $>>$ 40% PEG300 $>>$ 5% Tween-80 $>>$ 45% saline
 Solubility: \geq 2.5 mg/mL (4.67 mM); Clear solution
2. Add each solvent one by one: 10% DMSO $>>$ 90% (20% SBE-β-CD in saline)
 Solubility: \geq 2.5 mg/mL (4.67 mM); Clear solution
3. Add each solvent one by one: 10% DMSO $>>$ 90% corn oil
 Solubility: \geq 2.5 mg/mL (4.67 mM); Clear solution

BIOLOGICAL ACTIVITY

Description
Conivaptan (hydrochloride) is a non-peptide antagonist of vasopressin receptor, with K_i values of 0.48 and 3.04 nM for rat liver V1A receptor and rat kidney V2 receptor respectively.

IC$_{50}$ & Target

K_i: 0.48 nM (V1A receptor), 3.04 nM (V2 receptor)

In Vivo

Conivaptan (0.03, 0.1 and 0.3 mg/kg, i.v.) dose-dependently increases urine volume and reduces urine osmolality in both myocardial infarction and sham-operated rats. Conivaptan (0.3 mg/kg i.v.) significantly reduces right ventricular
systolic pressure, left ventricular end-diastolic pressure, lung/body weight and right atrial pressure in myocardial infarction rats. Conivaptan (0.3 mg/kg i.v.) significantly increases dP/dt(max)/left ventricular pressure in myocardial infarction rats[1]. Conivaptan produces an acute increase in urine volume (UV), a reduction in osmolality (UOsm) and, at the end of the investigation, cirrhotic rats receiving the V(1a)/V(2)-AVP receptor antagonist does not show hyponatremia or hypoosmolality. Conivaptan also normalizes U(Na)V without affecting creatinine clearance and arterial pressure[2]. Conivaptan (0.01 to 0.1 mg/kg, i.v.) exerts a dose-dependent diuretic effect in dogs without an increase in the urinary excretion of electrolytes, inhibits the pressor effect of exogenous vasopressin in a dose-dependent manner (0.003 to 0.1 mg/kg i.v.) and, at the highest dose (0.1 mg/kg i.v.), almost completely blocks vasoconstriction caused by exogenous vasopressin. Conivaptan (0.1 mg/kg, i.v.) improves cardiac function, as evidenced by significant increases in left ventricular dP/dtmax, cardiac output and stroke volume, and reduces preload and afterload, as evidenced by significant decreases in left ventricular end-diastolic pressure and total peripheral vascular resistance in dogs with congestive heart failure[3].

PROTOCOL

Animal Administration [1]
At 4 weeks after the operation, 39 myocardial infarction rats survived. Thirty are randomly selected without bias and divided into five groups such that the distribution of infarct size and body weight among groups are similar, and given vehicle, conivaptan (0.03, 0.1 and 0.3 mg/kg) or SR121463A (0.3 mg/kg) by intravenous administration. Sham rats are also divided into four groups and given vehicle or conivaptan (0.03, 0.1 and 0.3 mg/kg) by intravenous administration. Rats are then placed individually in metabolic cages and urine is collected for 3 h. Urine osmolality is measured by the freezing point depression method using an osmometer.
MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

See more customer validations on www.MedChemExpress.com

REFERENCES

