AMG-337

Cat. No.: HY-18696
CAS No.: 1173699-31-4
Molecular Formula: C₂₃H₂₂FN₇O₃
Molecular Weight: 463.46
Target: c-Met/HGFR
Pathway: Protein Tyrosine Kinase/RTK
Storage: Powder -20°C 3 years
 4°C 2 years
 In solvent -80°C 6 months
 -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro
DMSO: 100 mg/mL (215.77 mM; Need ultrasonic)

Preparing Stock Solutions

<table>
<thead>
<tr>
<th>Solvent Concentration</th>
<th>Mass 1 mg</th>
<th>Mass 5 mg</th>
<th>Mass 10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM</td>
<td>2.1577 mL</td>
<td>10.7884 mL</td>
<td>21.5768 mL</td>
</tr>
<tr>
<td>5 mM</td>
<td>0.4315 mL</td>
<td>2.1577 mL</td>
<td>4.3154 mL</td>
</tr>
<tr>
<td>10 mM</td>
<td>0.2158 mL</td>
<td>1.0788 mL</td>
<td>2.1577 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

In Vivo
1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline
 Solubility: ≥ 2.5 mg/mL (5.39 mM); Clear solution
2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)
 Solubility: ≥ 2.5 mg/mL (5.39 mM); Clear solution
3. Add each solvent one by one: 10% DMSO >> 90% corn oil
 Solubility: ≥ 2.5 mg/mL (5.39 mM); Clear solution

BIOLOGICAL ACTIVITY

Description
AMG-337 is a potent and highly selective small molecule ATP-competitive MET kinase inhibitor. AMG 337 inhibits MET kinase activity with an IC50 of < 5nM in enzymatic assays. IC50 value: < 5nM [1] Target: MET in vitro: AMG-337 demonstrates exquisite selectivity for MET when profiled against a diverse panel of over 400 protein and lipid kinases in a competitive binding assay. In cellular assays, AMG 337 inhibits HGF-dependent MET phosphorylation with an IC50 of < 10 nM. [1] AMG 337 is a selective inhibitor of Met, which inhibits multiple mechanisms of Met activation. [2] In vivo: AMG-337 demonstrates robust activity in MET-dependent cancer models. Oral administration of AMG 337 results in robust dose-dependent anti-tumor efficacy in MET amplified gastric cancer xenograft models, with inhibition of tumor growth consistent with the pharmacodynamic...
modulation of MET signaling. [1]

REFERENCES
