Product Data Sheet

SB-435495 ditartrate

Cat. No.: HY-19415B CAS No.: 304694-43-7 Molecular Formula: $C_{46}H_{52}F_{4}N_{6}O_{14}S$

Molecular Weight: 1021

Target: Phospholipase

Pathway: Metabolic Enzyme/Protease

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

BIOLOGICAL ACTIVITY

Description SB-435495 ditartrate is a potent, selective, reversible, non-covalent and orally active Lp-PLA2 inhibitor with an IC50 of 0.06 $nM^{[1][3]}$.

IC₅₀ & Target Lp-PLA2

0.06 nM (IC₅₀)

In Vitro

SB-435495 ditartrate inhibits CYP450 3A4 with an IC $_{50}$ of 10 μ M and the black membrane permeability is 0.017 cm/h $^{[1]}$. SB-435495 (5 µM; 24 h) ditartrate significantly inhibits the expression of Lp-PLA2 protein, while increases the expression levels of AMPK α and phosphorylated-AMPK α (T172) in oxLDL-exposed HUVECs $^{[2]}$.

SB-435495 (5 µM; 24-72 h) ditartrate significantly increases cell viability and NO expression, significantly decreases ET-1 expression in the oxLDL-exposed HUVECs^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[2]

Cell Line:	oxLDL-exposed human umbilical vein endothelial cells
Concentration:	5 μΜ
Incubation Time:	24 h
Result:	The expression of Lp-PLA $_2$ protein was significantly inhibited. Increased the expression levels of AMPK α and phosphorylated-AMPK α (T172).

Cell Viability Assay^[2]

Cell Line:	oxLDL-exposed human umbilical vein endothelial cells
Concentration:	5 μΜ
Incubation Time:	24, 48 and 72 h
Result:	Significantly increased cell viability.

In Vivo

SB-435495 (10 mg/kg; p.o.; once) ditartrate inhibits plasma Lp-PLA₂ in the WHHL rabbit^[1].

SB-435495 (10 mg/kg; i.p.; daily for 28 days) ditartrate effectively suppresses blood-retinal barrier (BRB) breakdown in

•	'53)-diabetic Brown Norway rats ^[3] . ently confirmed the accuracy of these methods. They are for reference only.
Animal Model:	WHHL $rabbit^{[1]}$
Dosage:	10 mg/kg
Administration:	Oral, once
Result:	Inhibited plasma Lp-PLA ₂ in the WHHL rabbit.

REFERENCES

- [1]. Blackie JA, et al. The discovery of SB-435495. A potent, orally active inhibitor of lipoprotein-associated phospholipase A(2) for evaluation in man. Bioorg Med Chem Lett. 2002 Sep 16;12(18):2603-6.
- [2]. Yang L, et al. AMP-activated protein kinase mediates the effects of lipoprotein-associated phospholipase A2 on endothelial dysfunction in atherosclerosis. Exp Ther Med. 2017 Apr;13(4):1622-1629.
- [3]. Canning P, et al. Lipoprotein-associated phospholipase A2 (Lp-PLA2) as a therapeutic target to prevent retinal vasopermeability during diabetes. Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7213-8.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ Med Chem Express.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA