Screening Libraries

Proteins

Tempone-H

Cat. No.: HY-23033 CAS No.: 3637-11-4 Molecular Formula: C₉H₁₇NO₂ Molecular Weight: 171.24 Target: Others Pathway: Others

Storage: 4°C, protect from light

* In solvent : -80°C, 6 months; -20°C, 1 month (protect from light)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 125 mg/mL (729.97 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	5.8398 mL	29.1988 mL	58.3976 mL
	5 mM	1.1680 mL	5.8398 mL	11.6795 mL
	10 mM	0.5840 mL	2.9199 mL	5.8398 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Tempone-H may be used as a spin trap in chemical and biological systems to quantify peroxynitrite and superoxide radical formation. Ferric and cupric ions are effective oxidants of Tempone- $H^{[1][2]}$.
In Vitro	Using TEMPONE-H the obtained sensitivity in the detection of peroxynitrite or superoxide radicals is about 10-fold higher than using the spin traps DMPO or $TMIO^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Dikalov S, et al. Quantification of peroxynitrite, superoxide, and peroxyl radicals by a new spin trap hydroxylamine 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine. Biochem Biophys Res Commun. 1997 Jan 3;230(1):54-7.

[2]. Dikalov SI, et al. Amyloid beta peptides do not form peptide-derived free radicals spontaneously, but can enhance metal-catalyzed oxidation of hydroxylamines to nitroxides. J Biol Chem. 1999 Apr 2;274(14):9392-9.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com