Diphenidol

MedChemExpress

Cat. No.: CAS No.: Molecular Formula: Molecular Weight: Target: Pathway: Storage:	HY-A0270 972-02-1 C ₂₁ H ₂₇ NO 309.45 mAChR; Sodium Channel GPCR/G Protein; Neuronal Signaling; Membrane Transporter/Ion Channel Please store the product under the recommended conditions in the Certificate of Analysis.	
---	---	--

BIOLOGICAL ACTIVITY						
Description	Diphenidol is a non-selective muscarinic M ₁ -M ₄ receptor antagonist, has anti-arrhythmic activity. Diphenidol is also a potent non-specific blocker of voltage-gated ion channels (Na ⁺ , K ⁺ , and Ca ²⁺) in neuronal cells. Diphenidol can be used in the study of antivertigo and antinausea ^{[1][2][3][4][5]} .					
IC ₅₀ & Target	mAChR1	mAChR2	mAChR3	mAChR4		
In Vitro	Diphenidol inhibits sodium currents and produces spinal anesthesia, and at -70 and -100 mV holding potentials, N2A cells IC ₅₀ were 0.77 and 62.6 μM ^{, respectively ^[3]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.}					
In Vivo	Diphenidol (2, 10 μmoL/kg, intraperitoneal injection) is used to reduce neuropathic pain and TNF-α overexpression in rats after chronic systolic injury ^[4] . Diphenidol (30 mg/kg, injected intravenously) has an inhibitory effect on exercise and morphine-induced vomiting in pica rats ^[5] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.					
	Animal Model:	Chronic constriction injury (CCI) rat model ^[4]				
	Dosage:	2, 10 μmoL/kg				
	Administration:	i.p., berore surgery, and on postoperative days 3, 6, 7, 11, 13 and 14.				
	Result:	Increased mechanical withdrawal threshold in a dose-dependent manner and decreased the TNF- α level.				

REFERENCES

[1]. Leung YM, et al. Inhibition of voltage-gated K+ channels and Ca2+ channels by diphenidol. Pharmacol Rep. 2012;64(3):739-44.

[2]. Leung YM, et al. Diphenidol inhibited sodium currents and produced spinal anesthesia. Neuropharmacology. 2010 Jun;58(7):1147-52.

[3]. Leung YM, et al. Diphenidol inhibited sodium currents and produced spinal anesthesia. Neuropharmacology. 2010 Jun;58(7):1147-52.

Product Data Sheet

[4]. Chen YW, et al. Systemic diphenidol reduces neuropathic allodynia and TNF-alpha overexpression in rats after chronic constriction injury. Neurosci Lett. 2013 Sep 27;552:62-5.

[5]. Takeda N, et al. Neuropharmacological mechanisms of emesis. I. Effects of antiemetic drugs on motion- and apomorphine-induced pica in rats. Methods Find Exp Clin Pharmacol. 1995 Nov;17(9):589-90.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA