

Product Data Sheet

Pitavastatin

Cat. No.: HY-B0144A CAS No.: 147511-69-1 Molecular Formula: $C_{25}H_{24}FNO_4$ Molecular Weight: 421.46

Target: HMG-CoA Reductase (HMGCR); Autophagy; Mitophagy; Apoptosis

Pathway: Metabolic Enzyme/Protease; Autophagy; Apoptosis

Storage: Powder -20°C 3 years

In solvent

4°C 2 years -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (237.27 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.3727 mL	11.8635 mL	23.7270 mL
	5 mM	0.4745 mL	2.3727 mL	4.7454 mL
	10 mM	0.2373 mL	1.1864 mL	2.3727 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: \geq 2.5 mg/mL (5.93 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.93 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Pitavastatin (NK-104) is a potent hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitor. Pitavastatin inhibits cholesterol synthesis from acetic acid with an IC ₅₀ of 5.8 nM in HepG2 cells. Pitavastatin is an efficient hepatocyte low-density lipoprotein-cholesterol (LDL-C) receptor inducer. Pitavastatin also possesses anti-atherosclerotic, anti-asthmatic, anti-osteoarthritis, antineoplastic, neuroprotective, hepatoprotective and reno-protective effects ^{[1][2][3][8]} .
IC ₅₀ & Target	HMG-CoA Reductase $^{[1]}$
In Vitro	Pitavastatin inhibits the growth of a panel of ovarian cancer cells, including those considered most likely to represent HGSOC, grown as a monolayers (IC ₅₀ =0.4-5 μ M) or as spheroids (IC ₅₀ = 0.6-4 μ M) ^[4] . Pitavastatin (1 μ M; 48 hours) induces apoptosis, evidenced by the increased activity of executioner caspases-3,7 as well as

caspase-8 and caspase-9 in Ovcar-8 cells and Ovcar-3 cells^[4].

Pitavastatin (1 μM, 48 hours) causes PARP cleavage in Ovcar-8 cells^[4].

Pitavastatin (0.1 and 1 μ M; 1 h, then cells incubate with TNF- α for 6 h) increases the expression of ICAM-1 mRNA through suppressing NF- κ B pathway in TNF- α -stimulated human saphenous vein endothelial cells^[6].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[4]

Cell Line:	Ovcar-8 cells
Concentration:	1 μM
Incubation Time:	48 hours
Result:	Induced PARP cleavage.

In Vivo

Pitavastatin (59 mg/kg; p.o.; twice daily for 28 days) causes significant tumour regression^[4].

Pitavastatin (0.1 mg/kg; p.o; daily for 12 weeks) retards the progression of atherosclerosis formation and improves NO bioavailability by eNOS up-regulation and decrease of O^{2-} in diet induced severe hyperlipidemia rabbit model^[7]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	4 week old female NCR Nu/Nu female mice (bearing Ovcar-4 tumours) ^[4]	
Dosage:	59 mg/kg	
Administration:	p.o.; twice daily for 28 days	
Result:	Caused significant tumour regression.	
Animal Model:	Female New Zealand white rabbits (diet induced severe hyperlipidemia) ^[7]	
Dosage:	0.1 mg/kg	
Administration:	p.o; daily for 12 weeks	

Result: Retarded the progression of atherosclerosis formation and improved NO bioavailability by eNOS up-regulation and decrease of O²⁻.

CUSTOMER VALIDATION

- J Hepatol. 2021 Aug;75(2):363-376.
- Acta Pharm Sin B. 2020 May;10(5):850-860.
- Biochem Pharmacol. 2019 Nov;169:113612.
- Proteomics. 2023 May 4;e2300041.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Demir B, et al. The Effects of Pitavastatin on Nuclear Factor-Kappa B and ICAM-1 in Human Saphenous Vein Graft Endothelial Culture. Cardiovasc Ther. 2019 May 2;2019:2549432.

Page 2 of 3 www.MedChemExpress.com

- [2]. Hayashi T, et al. A new HMG-CoA reductase inhibitor, pitavastatin remarkably retards the progression of high cholesterol induced atherosclerosis in rabbits. Atherosclerosis. 2004 Oct;176(2):255-63.
- [3]. Sahebkar A, et al. A comprehensive review on the lipid and pleiotropic effects of pitavastatin. Prog Lipid Res. 2021 Nov;84:101127.
- [4]. Morikawa S, et al. Relative induction of mRNA for HMG CoA reductase and LDL receptor by five different HMG-CoA reductase inhibitors in cultured human cells. J Atheroscler Thromb. 2000;7(3):138-44.
- [5]. Katsuki S, et al. Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. Circulation. 2014 Feb 25;129(8):896-906.
- [6]. Tajiri K, et al. Pitavastatin regulates helper T-cell differentiation and ameliorates autoimmune myocarditis in mice. Cardiovasc Drugs Ther. 2013 Oct;27(5):413-24.
- [7]. Hamano T, et al. Pitavastatin decreases tau levels via the inactivation of Rho/ROCK. Neurobiol Aging. 2012 Oct;33(10):2306-20.
- [8]. de Wolf E, et al. Dietary geranylgeraniol can limit the activity of pitavastatin as a potential treatment for drug-resistant ovarian cancer. Sci Rep. 2017 Jul 14;7(1):5410.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA