

# **Product** Data Sheet

## **Trichlormethiazide**

 Cat. No.:
 HY-B0235

 CAS No.:
 133-67-5

Molecular Weight: 380.66

Target: Others

Pathway: Others

Storage: 4°C, protect from light

\* In solvent : -80°C, 6 months; -20°C, 1 month (protect from light)

#### **SOLVENT & SOLUBILITY**

In Vitro

DMSO: 150 mg/mL (394.05 mM; Need ultrasonic)

| Preparing<br>Stock Solutions | Solvent Mass<br>Concentration | 1 mg      | 5 mg       | 10 mg      |
|------------------------------|-------------------------------|-----------|------------|------------|
|                              | 1 mM                          | 2.6270 mL | 13.1351 mL | 26.2702 mL |
|                              | 5 mM                          | 0.5254 mL | 2.6270 mL  | 5.2540 mL  |
|                              | 10 mM                         | 0.2627 mL | 1.3135 mL  | 2.6270 mL  |

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.57 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (6.57 mM); Clear solution
- Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.57 mM); Clear solution

### **BIOLOGICAL ACTIVITY**

Trichlormethiazide is an orally active thiazide diuretic, with antihypertensive effect. Trichlormethiazide increases urine volume (UV), Na and K excretion and tends to improve the depressed creatinine clearance (CCRE) in acute renal failure rats model<sup>[1][2]</sup>.

In Vivo

Trichlormethiazide (1 mg/kg; p.o.; once) increases urinary volume, sodium and potassium excretion in rats<sup>[1]</sup>.

Trichlormethiazide (10 mg/kg, i.v.; daily for 5 days) significantly reduces mean arterial pressure (MAP) within 24 h in high salt intake (HS) rats receiving angiotensin II, but does not affect MAP in any other group  $^{[2]}$ .

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$ 

| Animal Model:   | Male Wistar rats, weighing 170-300 $g^{[1]}$                                                                                                                                             |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Dosage:         | 1 mg/kg                                                                                                                                                                                  |  |
| Administration: | Oral administration, once                                                                                                                                                                |  |
| Result:         | Significantly increased potassium excretion in normal rats. Significantly increased urinary volume, sodium and potassium excretion in cisplatin-induced ARF (acute renal failures) rats. |  |
| Animal Model:   | Male Sprague-Dawley rats (350-450 g) <sup>[2]</sup>                                                                                                                                      |  |
| Dosage:         | 10 mg/kg                                                                                                                                                                                 |  |
| Administration: | Intravenous injection, daily, for 15 days                                                                                                                                                |  |
| Result:         | Produced a significant fall in MAP in rats on combined angiotensin II and high salt intake.                                                                                              |  |

#### **REFERENCES**

[1]. K Yao, et al. Diuretic effects of KW-3902, a novel adenosine A1-receptor antagonist, in various models of acute renal failure in rats. Jpn J Pharmacol. 1994 Apr;64(4):281-8.

[2]. J R Ballew, et al. Characterization of the antihypertensive effect of a thiazide diuretic in angiotensin II-induced hypertension. J Hypertens. 2001 Sep;19(9):1601-6.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$ 

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA