

Product Data Sheet

Bupivacaine

Cat. No.:HY-B0405CAS No.:38396-39-3Molecular Formula: $C_{18}H_{28}N_2O$ Molecular Weight:288.43

Target: iGluR; Sodium Channel; Calcium Channel; Potassium Channel

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: Powder -20°C

In solvent

4°C 2 years
-80°C 6 months
-20°C 1 month

Membrane Transporter/Ion Channel; Neuronal Signaling
Powder -20°C 3 years

N HN

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (346.70 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.4670 mL	17.3352 mL	34.6705 mL
	5 mM	0.6934 mL	3.4670 mL	6.9341 mL
	10 mM	0.3467 mL	1.7335 mL	3.4670 mL

Please refer to the solubility information to select the appropriate solvent.

- 131	Δ I	α	$1 \sim 1$	1 A	rTI	\mathbf{v}
ы	UL	fate	II WA	AL A	CII	VITY

Description	Bupivacaine is a NMDA receptor inhibitor. Bupivacaine can block sodium, L-calcium, and potassium channels. Bupivacaine potently blocks SCN5A channels with the IC ₅₀ of 69.5 μ M. Bupivacaine can be used for the research of chronic pain ^{[1][2][3]} .
IC ₅₀ & Target	NMDA Receptor
In Vitro	Bupivacaine inhibits NMDA receptor-mediated synaptic transmission in the dorsal horn of the spinal cord, an area critically involved in central sensitization ^[1] . Bupivacaine influences the voltage dependency of channel activation and steady-state inactivation by shifting the membrane potential of half-maximal activation/inactivation toward somewhat more negative membrane potentials. In their inactivated state, SCN5A channels are slightly sensitive toward Bupivacaine IC ₅₀ =2.18±0.16 μ M ^[2] . Bupivacaine reversibly inhibits the SK2 channel in a dose-dependent manner with the IC ₅₀ of 16.5 μ M ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Viability Assay ^[3]

Cell Line:	HEK 293 cells transfected with the SK2 gene (transfected cells were named SK2 cells)	
Concentration:	10, 100, 1000 μΜ	
Incubation Time:		
Result:	The IC ₅₀ value was 16.5 μM.	

CUSTOMER VALIDATION

- Nat Commun. 2023 Jun 3;14(1):3224.
- Stem Cell Res Ther. 2021 Feb 4;12(1):107.
- Sci Rep. 2022 Jan 26;12(1):1378.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

- [1]. Meaghan A Paganelli, et al. Actions of Bupivacaine, a widely used local anesthetic, on NMDA receptor responses. J Neurosci. 2015 Jan 14;35(2):831-42.
- [2]. Alexander P Schwoerer, et al. A Comparative Analysis of Bupivacaine and Ropivacaine Effects on Human Cardiac SCN5A Channels. Anesth Analg. 2015 Jun;120(6):1226-34
- [3]. Carsten Stoetzer, et al. Inhibition of Voltage-Gated Na⁺ Channels by Bupivacaine Is Enhanced by the Adjuvants Buprenorphine, Ketamine, and Clonidine. Reg Anesth Pain Med.Jul/Aug 2017;42(4):462-468.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com\\$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA