Glafenine hydrochloride

Cat. No.: HY-B1153A

CAS No.: 65513-72-6

Molecular Formula: C₁₉H₁₈Cl₂N₂O₄

Molecular Weight: 409.26

Target: Others

Pathway: Others

Storage
- Powder: -20°C, 3 years; 4°C, 2 years; In solvent: -80°C, 6 months; -20°C, 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO : ≥ 60 mg/mL (146.61 mM)

“>” means soluble, but saturation unknown.

Preparing Stock Solutions

<table>
<thead>
<tr>
<th>Solvent Mass</th>
<th>1 mg</th>
<th>5 mg</th>
<th>10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM</td>
<td>2.4434 mL</td>
<td>12.2172 mL</td>
<td>24.4343 mL</td>
</tr>
<tr>
<td>5 mM</td>
<td>0.4887 mL</td>
<td>2.4434 mL</td>
<td>4.8869 mL</td>
</tr>
<tr>
<td>10 mM</td>
<td>0.2443 mL</td>
<td>1.2217 mL</td>
<td>2.4434 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

Glafenine hydrochloride is a non-narcotic analgesic and non-steroidal anti-inflammatory drug. It is an ABCG2 inhibitor with an IC₅₀ of 3.2 μM.

IC₅₀ & Target

IC₅₀: 3.2 μM (ABCG2)[¹]

In Vitro

Glafenine increases the surface expression of mutant CFTR in baby hamster kidney (BHK) cells to 40% of that observed for wild-type CFTR[²]. Glafenine hydrochloride inhibits the proliferation and clonogenic activity of haSMCs and ECs in a dose-dependent manner. A block in the G2/M phase and a reduction in the G1 phase occur. The migratory ability of haSMCs is impaired in a dose-dependent manner and the extracellular matrix protein tenascin is reduced[³].

In Vivo

Glafenine injection (25 mg/kg i.v.) shows enhanced BLI signal in mice with an average of 2.9-fold signal enhancement over the control. Glafenine causes increases in BLI signal of up to 11.6- and 17.4-fold in two separate HEK293/ABCG2/fLuc xenografts in the same mouse compared to the signals generated by those xenografts.

[¹] Source: MedChemExpress.com
[²] Source: MedChemExpress.com
[³] Source: MedChemExpress.com
immediately before injection. Incubating polarized CFBE41o- monolayers and intestines isolated from mutant CFTR mice with glafenine increases the short-circuit current response to forskolin and genistein. Treatment with glafenine also partially restores total salivary secretion. Glafenine-treated zebrafish shows evidence of endoplasmic reticulum and mitochondrial stress, with disrupted intestinal architecture and halted cell stress responses, alongside accumulation of apoptotic intestinal epithelial cells in the lumen.

PROTOCOL

Cell Assay

Glafenine hydrochloride is added to the culture medium of the smooth muscle cells at three concentrations (10 μM, 50 μM, 100 μM). After 4 days of treatment, cells are harvested and the absolute cell number is counted.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration

Mice: HEK293/empty/fLuc and HEK293/ABCG2/fLuc cells are implanted subcutaneously into opposite flanks of female nude mice. Five mice are implanted to generate 10 ABCG2-overexpressing xenografts and five controls. Animals are imaged after D-luciferin administration, which is followed by a bolus injection of a single dose of glafenine (25 mg/kg) and continued imaging.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

www.MedChemExpress.com