ATP-¹³C₁₀, ¹⁵N₅ disodium

Cat. No.: HY-B2176S1

Molecular Formula: ${}^{13}C_{10}H_{14}{}^{15}N_{5}Na_{2}O_{13}P_{3}$

Molecular Weight: 566.04

Target:Endogenous MetabolitePathway:Metabolic Enzyme/ProteaseStorage:Solution, -20°C, 2 years

Administration:

Result:

BIOLOGICAL ACTIVITY

Description	and metabolism in vivo	$ATP^{-13}C_{10}$, $^{15}N_5$ (disodium) is a ^{13}C -labeled and ^{15}N -labeled \underline{ATP} (HY-B2176). ATP is a central component of energy storage and metabolism in vivo. ATP provides the metabolic energy to drive metabolic pumps and serves as a coenzyme in cells. ATP is an important endogenous signaling molecule in immunity and inflammation[1][2][3][4].	
In Vitro	synergistic effect on th ATP-13C10,15N5 (2 mM activation-dependent i ATP-13C10,15N5 disod	ATP-13C10,15N5 (Adenosine 5'-triphosphate-13C10,15N5; 5 mM; 1 hour) disodium co-treatment with LPS (1 μ g/mL) has a synergistic effect on the activation of the NLRP3 inflammasome in HGFs ^[3] . ATP-13C10,15N5 (2 mM; 0.5-24 hours) disodium induces secretion of IL-1 β , KC and MIP-2 from BMDMs in a caspase-1 activation-dependent manner ^[4] . ATP-13C10,15N5 disodium promotes neutrophil chemotaxis in vitro ^[4] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
In Vivo	ATP-13C10,15N5 (Adenosine 5'-triphosphate-13C10,15N5; 50 mg/kg; i.p.) disodium protects mice against bacterial infection in vivo ^[4] . ATP-13C10,15N5 disodium induces the secretion of IL-1β, KC and MIP-2 and neutrophils recruitment in vivo ^[4] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	Four-week-old Kunming mice (18-22 g) ^[4]	
	Dosage:	50 mg/kg	

REFERENCES

[1]. Swennen EL, et al. Immunoregulatory effects of adenosine 5'-triphosphate on cytokine release from stimulated whole blood. Eur J Immunol. 2005 Mar;35(3):852-8.

[2]. M J L Bours, et al. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther. 2006 Nov;112(2):358-404.

Protected mice from bacterial infection.

Intraperitoneal injection, before bacterial (E. coli) challenge

[3]. Shuo Xu, et al. Doxycycline inhibits NAcht Leucine-rich repeat Protein 3 inflammasome activation and interleukin-1 β production induced by Porphyromonas gingivalis-lipopolysaccharide and adenosine triphosphate in human gingival fibroblasts. Arch Oral Biol. 2019 Nov;107:104514.

4]. Yang Xiang, et al. Adenosine	-5'-Triphosphate (ATP) Protects Mice ag	gainst Bacterial Infection by Activation of	the NLRP3 Inflammasome. PLoS One. 2013; 8(5): e63759.
	Caution: Product has not been ful	lly validated for medical applications	s. For research use only.
			@MedChemExpress.com
	Address: 1 Deer Park	Dr, Suite Q, Monmouth Junction, NJ (08852, USA

Page 2 of 2 www.MedChemExpress.com