Riboflavin Tetrabutyrate

Cat. No.: HY-B2239
CAS No.: 752-56-7
Molecular Formula: C₃₃H₄₄N₄O₁₀
Molecular Weight: 656.72
Target: Others
Pathway: Others

Storage:
- Powder
 - -20°C 3 years
 - 4°C 2 years
- In solvent
 - -80°C 6 months
 - -20°C 1 month

Solvent & Solubility

In Vitro
DMSO : ≥ 100 mg/mL (152.27 mM)
≥ means soluble, but saturation unknown.

<table>
<thead>
<tr>
<th>Preparing Stock Solutions</th>
<th>Solvent Concentration</th>
<th>Mass</th>
<th>1 mg</th>
<th>5 mg</th>
<th>10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 mM</td>
<td>1.5227 mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 mM</td>
<td>0.3045 mL</td>
<td>1.5227 mL</td>
<td>3.0454 mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 mM</td>
<td>0.1523 mL</td>
<td>0.7614 mL</td>
<td>1.5227 mL</td>
<td></td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description
Riboflavin tetrabutyrate is a lipophilic flavin derivative with antioxidative and lipid peroxide-removing activity.

In Vitro
Riboflavin tetrabutyrate inhibits oxygen uptake by lipid peroxidation. Riboflavin tetrabutyrate is suppressive against both NADPH-coupled and ascorbate-induced microsomal lipid peroxidation. Riboflavin tetrabutyrate seems to exhibit its antioxidative action at or after the hydrogen atom is abstracted as a free radical from an active methylene group of polyunsaturated fatty acids during the process of enzymic oxidation-reduction reaction[^1].

In Vivo
Riboflavin tetrabutyrate might improve the metabolism of lipids in patients suffering from atherosclerosis, diabetes, fatty liver and so on through the inhibition of lipid peroxide, resulting in the decrease of the elevated serum lipid[^1]. Feeding of riboflavin tetrabutyrate results in an increase in the hepatic activity of 3-ketoacyl-CoA thiolase by 50% of the control level, while the activities of renal 3-ketoacyl-CoA thiolase and of hepatic and renal acyl-CoA synthetase and acyl-CoA dehydrogenase remain unaffected. The increase in hepatic 3-ketoacyl-CoA thiolase activity suggests that prolonged riboflavin tetrabutyrate administration results in an increased beta-oxidation of fatty acid in the liver.
PROTOCOL

Animal Administration

Rats: Riboflavin tetrabutyrate-\(^{14}\)C (700 \(\mu\)g, corresponding to 400 \(\mu\)g of riboflavin; total radioactivity \(2.19\times10^5\) cpm) is suspended in 0.2mL of soybean oil and given per os. In the case of injection, same amount of Riboflavin tetrabutyrate-\(^{14}\)C is dissolved in 1mL of soybean oil and injected subcutaneously into the back of rat\(^{[3]}\).

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA