

Product Data Sheet

Tiron

 Cat. No.:
 HY-D0261

 CAS No.:
 149-45-1

 Molecular Formula:
 C_eH₄Na₂O_eS₂

Molecular Weight: 314.2

Target: Biochemical Assay Reagents; Apoptosis

Pathway: Others; Apoptosis

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO : 83.33 mg/mL (265.21 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.1827 mL	15.9134 mL	31.8269 mL
	5 mM	0.6365 mL	3.1827 mL	6.3654 mL
	10 mM	0.3183 mL	1.5913 mL	3.1827 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (6.62 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (6.62 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Tiron is a non-toxic chelator of a variety of metals. Tiron is cell permeable analog of vitamin E and function as hydroxyl radical and superoxide scavenger. Tiron is an orally active antioxidant. Tiron can be used to alleviate acute metal overload in animals^{[1][2][3]}.

In Vitro Tiron (10 mM) protects Chinese hamster V79 cells against H₂O₂-induced cytotoxicity^[1].

Tiron (0-20 mM) protects supercoiled DNA from metal-mediated superoxide-dependent strand breaks^[1].

Tiron (50 nM-200 nM, 48 h) inhibits HG-induced neonatal rat cardiomyocytes apoptosis^[3].

Tiron (50 nM-200 nM, 48 h) reduces intracellular osteopontin in neonatal rat cardiomyocytes^[3].

Tiron (0.2 mM, 2 h) inhibits UVB-induced up-regulation of MMP-1 and MMP-3 in HDFs^[4].

Tiron (0.7 mM, 48 h) increases the percentage of PT4 cells in both the S and G2/M phases^[5].

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

Cell Cycle Analysis ^[5]		
Cell Line:	PT4 cells	
Concentration:	0.7 mM	
Incubation Time:	48 h	
Result:	Increased the percentage of PT4 cells in S and G2/M phases, along with a reduction of cells in the G0/G1 phase.	

In Vivo

Tiron (200 mg/kg, oral gavage) ameliorates oxidative stress and inflammation in a murine model of airway remodeling^[2]. Tiron (300 mg/kg, i.p., daily for two weeks) alleviated apoptosis of the left ventricular cardiomyocytes in STZ-induced diabetic mice^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	BALB/c mice challenged with Ovalbumin (OVA) aerosol for 8 weeks ^[2]		
Dosage:	200 mg/kg		
Administration:	Oral gavage.		
Result:	Inhibited levels of NOx, IL-13 and TGF- β 1, and immunoreactivity of NF- κ B.		
Animal Model:	STZ-induced diabetic mice ^[3]		
Dosage:	300 mg/kg		
Administration:	i.p., daily for two weeks.		
Result:	Reduced the levels of total oxidized proteins and advanced glycation end products (AGEs) related proteins.		
	Inhibited cardiac myocyte apoptosis. Decreased PKCδ localization on plasma membrane.		

REFERENCES

- [1]. Krishna CM, et al. The catecholic metal sequestering agent 1,2-dihydroxybenzene-3,5-disulfonate confers protection against oxidative cell damage. Arch Biochem Biophys. 1992 Apr;294(1):98-106. 2.
- [2]. El-Sherbeeny NA, et al. Tiron ameliorates oxidative stress and inflammation in a murine model of airway remodeling. Int Immunopharmacol. 2016 Oct;39:172-180.
- [3]. Jiang P, et al. Tiron ameliorates high glucose-induced cardiac myocyte apoptosis by PKCδ-dependent inhibition of osteopontin. Clin Exp Pharmacol Physiol. 2017 Jul;44(7):760-770.
- [4]. Lu J, et al. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts. PLoS One. 2016 Aug 3;11(8):e0159998.
- [5]. Monticone M, et al. NAC, tiron and trolox impair survival of cell cultures containing glioblastoma tumorigenic initiating cells by inhibition of cell cycle progression. PLoS One. 2014 Feb 28;9(2):e90085.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com