Product Data Sheet

Disperse Red 1

Cat. No.: HY-D0342 CAS No.: 2872-52-8 Molecular Formula: $C_{16}H_{18}N_4O_3$ Molecular Weight: 314.34

Target: Fluorescent Dye

Pathway: Others

Storage: 4°C, sealed storage, away from moisture and light

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 83.33 mg/mL (265.10 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	3.1813 mL	15.9063 mL	31.8127 mL
Stock Ootations	5 mM	0.6363 mL	3.1813 mL	6.3625 mL
	10 mM	0.3181 mL	1.5906 mL	3.1813 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (6.62 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Disperse Red 1, an azobenzene derivative, is an azo textile dye extensively used for dyeing polyester fabrics in textile industry ^{[1][2]} .
In Vitro	Exposure of human lymphocytes and a human hepatoma (HepG2) cell line to Disperse Red 1 in vitro at concentrations of 1.0 μ g/mL and 2.0 μ g/mL increases the frequency of micronuclei and also causes mutations in the Salmonella assay (13 revertants/ μ g) ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	To assess the toxic effects of Disperse Red 1 (DR1), on reproduction, sexually mature male mice (Mus musculus, strain CF-1) are orally (gavage) treated with single doses of the compound (20-500 mg/kg). Disperse Red 1 treatment causes testicular toxicity, increases frequency of sperm with abnormal morphology and decreases fertility. An increased amount of DNA damage is also detected in testis cells 16.6 and 24.9 days after treatments with 100 and 500 mg/kg ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Caution: Product has no	ot been fully validated for m	nedical applications. For	research use only.	
	Tel: 609-228-6898	Tel: 609-228-6898 Fax: 609-228-5909	Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@Med	Caution: Product has not been fully validated for medical applications. For research use only. Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

[1]. Laís da Silva Leite, et al. Monitoring Ecotoxicity of Disperse Red 1 Dye During photo-Fenton Degradation. Chemosphere. 2016 Apr;148:511-7.

REFERENCES

Page 2 of 2 www.MedChemExpress.com