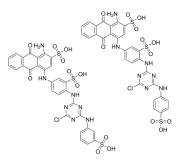
Proteins

Screening Libraries

Procion Blue HB

Cat. No.: HY-D0965 CAS No.: 12236-82-7 Molecular Formula: C, H, CIN, O, S


Molecular Weight:

Target: Fluorescent Dye

Pathway: Others

4°C, protect from light Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro DMSO : ≥ 110 mg/mL (142.12 mM)

H₂O: 10 mg/mL (12.92 mM; Need ultrasonic)

Ethanol: < 1 mg/mL (insoluble)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.2920 mL	6.4599 mL	12.9199 mL
	5 mM	0.2584 mL	1.2920 mL	2.5840 mL
	10 mM	0.1292 mL	0.6460 mL	1.2920 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

Procion Blue HB (Reactive Blue 2) is a purinergic antagonist.

In Vitro

Reactive Blue 2 is used as an ATP receptor antagonist and induces Ca^{2+} oscillations in HeLa cells. Reactive Blue 2 enhances a Ca²⁺ response to histamine that is linked to the PLC cascade. Reactive Blue 2 may activate the PLC cascade in an extracellular Ca²⁺-dependent manner and induce Ca²⁺ oscillations^[1]. The application of Reactive Blue 2 increases K⁺ secretion in a dose-dependent manner, and this increase is characterized as a peak followed by a partial relaxation to a steady-state. Reactive Blue 2 has antagonistic activities at P2Y4, and the antagonist potency at P2Y4 paralleled the potency of K+ secretion^[2]. The anthraquinone dye reactive blue 2 is found to be a potent inhibitor of a protein kinase isolated and purified from thylakoids. The mode of inhibition is noncompetitive, with a K_i of 8 μM for the membrane-bound kinase, and 6 microM for the purified kinase. The inhibitor does not modify the substrate preference of the endogenous kinase and could be removed from the membrane by washing^[3]. Reactive blue 2 selectively inhibits responses mediated via the P2ypurinoceptor, at least within a limited concentration range. In preparations where the tone has been raised with noradrenaline, ATP and 2-methylthio ATP, but not α,β -methylene ATP, produce relaxations of the vessel. These relaxations are inhibited in the presence of reactive blue $2^{[4]}$. Reactive blue 2, at concentrations of 0.3-10 μ M blocks the ATP-induced

oscillation in a concentration-dependent manner^[5].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

- [1]. Okuda A, et al. Reactive blue 2 induces calcium oscillations in HeLa cells. Jpn J Physiol. 2001 Jun;51(3):389-93.
- [2]. Lee JH, et al. Reactive blue 2, an antagonist of rat P2Y4, increases K+ secretion in rat cochlea strial marginal cells. Hear Res. 2006 Sep;219(1-2):66-73.
- [3]. Coughlan SJ, et al. Reactive blue 2 is a potent inhibitor of a thylakoid protein kinase. Eur J Biochem. 1991 Apr 23;197(2):467-71.
- [4]. Burnstock G, et al. P2-purinoceptors of two subtypes in the rabbit mesenteric artery: reactive blue 2 selectively inhibits responses mediated via the P2y-but not the P2x-purinoceptor. Br J Pharmacol. 1987 Feb;90(2):383-91.
- [5]. Uneyama H, et al. Suramin and reactive blue 2 are antagonists for a newly identified purinoceptor on rat megakaryocyte. Br J Pharmacol. 1994 Jan;111(1):245-9.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com