Product Data Sheet

RhoNox-1

Cat. No.:HY-D1533CAS No.:1447815-38-4Molecular Formula: $C_{28}H_{30}N_2O_4$ Molecular Weight:458.55

Target: Fluorescent Dye

Pathway: Others

Storage: 4°C, protect from light

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (218.08 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.1808 mL	10.9039 mL	21.8079 mL
	5 mM	0.4362 mL	2.1808 mL	4.3616 mL
	10 mM	0.2181 mL	1.0904 mL	2.1808 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

RhoNox-1 is a fluorescent probe for the specific detection of divalent iron ions, and when RhoNox-1 reacts with Fe $^{2+}$. RhoNox-1 can generate an irreversible orange (red) fluorescent product (Ex/Em \boxtimes 540/575 nm). FeRhoNox-1 can enter the cell well, suitable for the detection of Fe $^{2+}$ in living cells, and tends to be localized in the Golgi apparatus [1].

In Vitro

- 1. Preparation of RhoNox-1 working solution
- 1.1 Preparation of the stock solution

Dissolve 50 μg RhoNox-1 in 110 μL DMSO to obtain 1 mM of stock solution.

1.2 Preparation of RhoNox-1 working solution

Dilute the stock solution in serum-free cell culture medium or PBS to obtain 1-10 μM of working solution.

Note: Please adjust the concentration of RhoNox-1 working solution according to the actual situation.

- 2. Cell staining (6-well plate)
- 2.1 Suspension cells
- a.Centrifuge at 1000 g at 4 \boxtimes for 3-5 minutes and then discard the supernatant. Wash twice with PBS, 5 minutes each time. The cell density is 1×10^6 /mL.
- b.Add 1 mL of working solution, and then incubate at room temperature for 5-30 minutes.
- c.Centrifuge at 400 g at 4 $\mbox{\em M}$ for 3-4 minutes and then discard the supernatant.
- d.Wash twice with PBS, 5 minutes each time.

- e.Resuspend cells with serum-free cell culture medium or PBS. Observation by fluorescence microscopy or flow cytometry.
- 2.2 Adherent cells
- a.Culture adherent cells on sterile coverslips.
- b.Remove the coverslip from the medium and aspirate excess medium.
- c.Add 100 μ L of working solution, gently shake it to completely cover the cells,and then incubate at room temperature for 5-30 minutes.
- d. Wash twice with medium, 5 minutes each time. Observation by fluorescence microscopy.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

- [1]. Mukaide T, et al. Histological detection of catalytic ferrous iron with the selective turn-on fluorescent probe RhoNox-1 in a Fenton reaction-based rat renal carcinogenesis model. Free Radic Res. 2014 Sep;48(9):990-5.
- [2]. Jamnongkan W, et al. Upregulation of transferrin receptor-1 induces cholangiocarcinoma progression via induction of labile iron pool. Tumour Biol. 2017 Jul;39(7):1010428317717655.
- [3]. Ito F, et al. Contrasting intra- and extracellular distribution of catalytic ferrous iron in ovalbumin-induced peritonitis. Biochem Biophys Res Commun. 2016 Aug 5;476(4):600-606.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA