N-Desmethylclozapine

Cat. No.: HY-G0021
CAS No.: 6104-71-8
Molecular Formula: C₁₇H₁₇ClN₄
Molecular Weight: 312.8
Target: Opioid Receptor
Pathway: GPCR/G Protein; Neuronal Signaling
Storage: Powder
-20°C 3 years
4°C 2 years
In solvent
-80°C 6 months
-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro
DMSO : ≥ 50 mg/mL (159.85 mM)
* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions

<table>
<thead>
<tr>
<th>Solvent Concentration</th>
<th>Mass 1 mg</th>
<th>Mass 5 mg</th>
<th>Mass 10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM</td>
<td>3.1969 mL</td>
<td>15.9847 mL</td>
<td>31.9693 mL</td>
</tr>
<tr>
<td>5 mM</td>
<td>0.6394 mL</td>
<td>3.1969 mL</td>
<td>6.3939 mL</td>
</tr>
<tr>
<td>10 mM</td>
<td>0.3197 mL</td>
<td>1.5985 mL</td>
<td>3.1969 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

In Vivo
1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline
   Solubility: ≥ 2.5 mg/mL (7.99 mM); Clear solution
2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)
   Solubility: ≥ 2.5 mg/mL (7.99 mM); Clear solution

BIOLOGICAL ACTIVITY

Description
N-Desmethylclozapine is a dengue virus inhibitor, and an agonist of δ-opioid receptor.

In Vitro
The IC₅₀s of N-desmethylclozapine, fluoxetine hydrochloride, and salmeterol xinafoate in Huh-7 cells infected with DENV-2 are 1 μM, 0.38 μM, and 0.67 μM, respectively. The levels of NS3 are reduced in cells treated with all three inhibitors compared to DMSO treatment, suggesting that the inhibitors act at a stage prior to viral protein translation. N-Desmethylclozapine-treated cells show a >75% reduction in negative-strand RNA levels[1], N-desmethylclozapine exhibits slight agonistic effects on the M1 mAChR, and agonistic properties at the 5-HT1A receptor in the cerebral cortex and hippocampus. This compound also behaves as an agonist at the δ-opioid receptor in the cerebral cortex.
and striatum\(^2\). N-desmethylclozapine (3 µM) greatly decreases the outward current in excitatory neurons, but not in inhibitory neurons. In excitatory neurons, N-desmethylclozapine alone is more effective than either clozapine alone or the combination of clozapine and N-desmethylclozapine. The effect of N-desmethylclozapine in excitatory neurons is significantly suppressed by 0.1 µM pirenzepine and 1 µM atropine. N-desmethylclozapine, but not clozapine, suppressed K\(^+\) channels via M1 receptors in excitatory cells\(^3\). N-desmethylclozapine leads to a decrease in TxB2 levels under unstimulated conditions as well as under TSST-1 stimulation. Clozapine, N-desmethylclozapine and CPZ possibly act on neurotransmitter systems via modulation of TxA2 or TxB2 production\(^5\).

<table>
<thead>
<tr>
<th>In Vivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-desmethylclozapine in rat and human at M2 and M4 mAChRs underlying presynaptic modulation of GABA and glutamate release, respectively. In particular, N-desmethylclozapine maybe a M2 mAChR antagonist in the rat but has no activity at this receptor in human neocortex. However, N-desmethylclozapine has an agonistic effect at M4 mAChR in the human but no such effect in the rat neocortex(^4).</td>
</tr>
</tbody>
</table>

**REFERENCES**


