Honokiol

Cat. No.: HY-N0003
CAS No.: 35354-74-6
Molecular Formula: C₁₈H₁₈O₂
Molecular Weight: 266.33
Target: Akt; ERK; Autophagy
Pathway: PI3K/Akt/mTOR; MAPK/ERK Pathway; Stem Cell/WntAutophagy
Storage: Powder
-20°C 3 years
4°C 2 years
In solvent
-80°C 6 months
-20°C 1 month

Solvent & Solubility

In Vitro
DMSO: ≥ 50 mg/mL (187.74 mM)
* "≥" means soluble, but saturation unknown.

<table>
<thead>
<tr>
<th>Preparing Stock Solutions</th>
<th>Solvent Mass Concentration</th>
<th>1 mg</th>
<th>5 mg</th>
<th>10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 mM</td>
<td>3.7547 mL</td>
<td>18.7737 mL</td>
<td>37.5474 mL</td>
</tr>
<tr>
<td></td>
<td>5 mM</td>
<td>0.7509 mL</td>
<td>3.7547 mL</td>
<td>7.5095 mL</td>
</tr>
<tr>
<td></td>
<td>10 mM</td>
<td>0.3755 mL</td>
<td>1.8774 mL</td>
<td>3.7547 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: corn oil
 Solubility: 16.67 mg/mL (62.59 mM); Clear solution; Need ultrasonic
2. Add each solvent one by one: 10% DMSO >> 90% corn oil
 Solubility: ≥ 2.5 mg/mL (9.39 mM); Clear solution
3. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline
 Solubility: ≥ 2.5 mg/mL (9.39 mM); Clear solution
4. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)
 Solubility: ≥ 2.5 mg/mL (9.39 mM); Clear solution

BIOLOGICAL ACTIVITY

Description
Honokiol is a bioactive, biphenolic phytochemical that possesses potent antioxidative, anti-inflammatory, antiangiogenic, and anticancer activities by targeting a variety of signaling molecules. It inhibits the activation of Akt and enhances the phosphorylation of ERK1/ERK2.
| **In Vitro** | Honokiol (0, 12.5, 25 and 50 μM) inhibits the growth of GBM cells and induces apoptosis, with IC\textsubscript{50} of appr against 30 μM DBTRG-05MG cell. Honokiol-induced apoptosis of GBM cells is associated with the downregulation of the Rb protein and cleavage of PARP and Bcl-x (S/L). Honokiol (50 μM) increases the level of autophagy markers in GBM cells[1]. Honokiol has anticancer effect, and the IC\textsubscript{50} values with MDA-MB-231, MDA-MB-468, and MDA-MB-453 cell lines is 16.99 ± 1.28 μM, 15.94 ± 2.35 μM and 20.11 ±3.13 μM respectively. Honokiol (3, 10 μM) produces significant inhibition on the spheroid number and spheroid sizes in the clonogenic assay[2]. Honokiol (0.1-1.0 μM) specifically inhibits washed human platelet aggregation stimulated by collagen, but not by other agonists. honokiol (0.6 and 1.0 μM) can concentration-dependently inhibit the collagen-induced ATP-release reaction in washed human platelets. Honokiol specifically inhibits platelet aggregation and the phosphorylation of Lyn, PLC\textgamma2, and PKC stimulated with convulxin. Honokiol (5, 10 μM) significantly inhibits convulxin-stimulated MAPKs and Akt activation[3]. Honokiol (10, 20 μM) increases ERK1/2 phosphorylation in a dose-dependent manner depending on CaMK II activation[4]. |
| **In Vivo** | Honokiol-NM (40 mg/kg, p.o.) produces superior anticancer effects, and the PCNA, Cyclin D1 and cleaved caspase 3 expressions are 2.12, 1.92 and 1.68-fold significantly altered in this treated group[2].

PROTOCOL

Cell Assay[2]

In cytotoxicity assays, 10,000 cells/well are added to 96 wells plates and incubated overnight, thereafter cells are treated with different concentrations of Honokiol dissolved in dimethylsulphoxide (DMSO). Since Honokiol is not soluble in aqueous solvents, for in vitro studies Honokiol is dissolved in DMSO. To study the possible effect of DMSO on cells, solvent (DMSO) control is used at highest concentration of <0.1%. After 72 h treatment, cells are fixed and cell viability is measured by crystal violet staining (0.05%).

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration[2]

For anticancer in vivo studies, the MDA-MB-231 cells (2 million) are injected into mammary fat tissue. Two weeks after the tumor cell injections, palpable tumors are observed in mammary tissues, which is an indication of tumor formation. Then drug treatment either in free form or in nanomicellar forms is given orally at the dose of 40 and 80 mg/kg daily. The drug treatment is continued for 4 weeks, and the tumor volumes and body weights are recorded weekly. After 4 weeks of treatment, animals are sacrificed; final tumor volumes and weights are measured. These tumors are used for western blot and immunohistochemical analysis. For western blot experiments, tumor tissues are stored at −80°C till the analysis is done. For IHC, tumors are fixed in formal saline.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

See more customer validations on www.MedChemExpress.com

REFERENCES

