Formononetin

Cat. No.: HY-N0183
CAS No.: 485-72-3
Molecular Formula: C₁₆H₁₂O₄
Molecular Weight: 268.26
Target: FGFR
Pathway: Protein Tyrosine Kinase/RTK
Storage: Powder
-20°C 3 years
4°C 2 years
In solvent
-80°C 6 months
-20°C 1 month

Solvent & Solubility

In Vitro

DMSO: ≥ 35 mg/mL (130.47 mM)
*“≥” means soluble, but saturation unknown.

<table>
<thead>
<tr>
<th>Preparing Stock Solutions</th>
<th>Solvent Concentration</th>
<th>Mass</th>
<th>1 mg</th>
<th>5 mg</th>
<th>10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 mM</td>
<td>3.7277 mL</td>
<td>18.6386 mL</td>
<td>37.2773 mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 mM</td>
<td>0.7455 mL</td>
<td>3.7277 mL</td>
<td>7.4555 mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 mM</td>
<td>0.3728 mL</td>
<td>1.8639 mL</td>
<td>3.7277 mL</td>
<td></td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

Formononetin (Formononetol; Flavosil) is a bioactive component extracted from the red clover; inhibits the proliferation of DU-145/PC-3 cells in a dose-dependent manner. IC50 value: Target: anti-cancer in vitro: formononetin inhibited the proliferation of DU-145 cells in a dose-dependent manner. DU-145 cells treated with different concentrations of formononetin displayed obvious morphological changes of apoptosis under fluorescence microscopy. In addition, formononetin increased the proportion of early apoptotic DU-145 cells, down-regulated the protein levels of Bcl-2 and up-regulated those of RASD1 and Bax [1]. Formononetin significantly inhibited the cell growth of PC-3 in a dose-dependent manner, but no such effect was observed in RWPE1 cells. Formononetin treatment contributed to the reduced Bcl-2 protein level and the elevated Bax expression in PC-3 cells, thereby resulting in the increasing Bax/Bcl-2 ratios. Furthermore, the phosphorylated level of p38 in PC-3 cells was activated through the FN treatment, whereas the endogenous Akt phosphorylation was blocked [2]. Compared with the control, formononetin inhibited the proliferation of MCF-7 cells and effectively induced cell cycle arrest. The levels of p-IGF-1?R, p-Akt, cyclin D1 protein expression, and cyclin D1 mRNA expression were also downregulated [3]. In vivo: formononetin also prevented the tumor growth of human breast cancer cells in nude mouse xenografts [3].
REFERENCES

