Proteins

Product Data Sheet

Formononetin-d₃-1

Cat. No.: HY-N0183S4

Molecular Formula: $C_{16}H_{9}D_{3}O_{4}$ Molecular Weight: 271.28

Target: **FGFR**

Pathway: Protein Tyrosine Kinase/RTK

Storage: Powder -20°C 3 years

4°C 2 years In solvent -80°C 6 months

> -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (368.62 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.6862 mL	18.4311 mL	36.8623 mL
	5 mM	0.7372 mL	3.6862 mL	7.3725 mL
	10 mM	0.3686 mL	1.8431 mL	3.6862 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Formononetin- d_3 -1 is the deuterium-labeled Formononetin (HY-N0183) $^{[1]}$.	
In Vitro	Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

REFERENCES

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019 Feb;53(2):211-216.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com