Glycyrrhizic acid

Cat. No.: HY-N0184
CAS No.: 1405-86-3
Molecular Formula: C₄₂H₆₂O₁₆
Molecular Weight: 822.93
Target: Virus Protease
Pathway: Anti-infection
Storage:
- Powder
 - -20°C: 3 years
 - 4°C: 2 years
 - In solvent
 - -80°C: 6 months
 - -20°C: 1 month

SOLVENT & SOLUBILITY

In Vitro
DMSO: 100 mg/mL (121.52 mM; Need ultrasonic)
H₂O: ≥ mg/mL
* "≥" means soluble, but saturation unknown.

<table>
<thead>
<tr>
<th>Preparing Stock Solutions</th>
<th>Solvent Concentration</th>
<th>1 mg</th>
<th>5 mg</th>
<th>10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 mM</td>
<td>1.2152 mL</td>
<td>6.0759 mL</td>
<td>12.1517 mL</td>
</tr>
<tr>
<td></td>
<td>5 mM</td>
<td>0.2430 mL</td>
<td>1.2152 mL</td>
<td>2.4303 mL</td>
</tr>
<tr>
<td></td>
<td>10 mM</td>
<td>0.1215 mL</td>
<td>0.6076 mL</td>
<td>1.2152 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

In Vivo
1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline
 Solubility: ≥ 2.5 mg/mL (3.04 mM); Clear solution
2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)
 Solubility: ≥ 2.5 mg/mL (3.04 mM); Clear solution
3. Add each solvent one by one: 10% DMSO >> 90% corn oil
 Solubility: ≥ 2.5 mg/mL (3.04 mM); Clear solution

BIOLOGICAL ACTIVITY

Description
Glycyrrhizic acid is a triterpenoid saponin, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities.

In Vitro
Glycyrrhizic acid shows a series of anti-cancer-related pharmacological activities, such as broad-spectrum anti-cancer ability, resistance to the tissue toxicity caused by chemotherapy and radiation, drug absorption enhancing effects and anti-multidrug resistance (MDR) mechanisms, as a carrier material in drug delivery systems[1]. In intestinal NCI-H716 cells that secretes GLP-1, Glycyrrhizic acid promotes GLP-1 secretion with a marked elevation of...
calcium levels. Glycyrrhizic acid can enhance GLP-1 secretion through TGR5 activation[2]. Glycyrrhizic acid can form a stable transparent low-molecular-weight hydrogels (LMWHs) at 37°C in physiological phosphate buffered saline (PBS) with nanoclusters as the microstructures[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

In type 1-like diabetic rats induced by streptozotocin (STZ-treated rats), Glycyrrhizic acid increases the level of plasma GLP-1, which is blocked by triamterene at a dose sufficient to inhibit Takeda G-protein-coupled receptor 5 (TGR5)[1]. Glycyrrhizic acid (Glycyrrhizic acid; 50 mg/kg, i.p.) significantly decreases the levels of TgAb, HMGB1, TNF-α, IL-6, IL-1β in mice[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Animal Administration[3]

Mice[3]

NOD.H-2M4 mice are fed in the animal house until 4 weeks of age. A total of 24 male mice are then randomly separated into three different groups (n=8 per group). Mice in the control group are given sterile water without supplement. Mice in the iodine supplement (NaI) group are given 0.005% NaI in the drinking water. Mice in the NaI+Glycyrrhizic acid group are treated with 50 mg/kg Glycyrrhizic acid once daily for 4 weeks, administered via intraperitoneal injection after 8 weeks of iodine supplementation. Thyroid tissues are removed surgically under anesthesia, washed with cold saline, blotted on filter paper and weighed using an electronic balance. The thyroid gland tissues are then stored at -80°C until use[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Cell Commun Signal. 2023 May 1;21(1):86.

See more customer validations on www.MedChemExpress.com

REFERENCES

[3]. Li C, et al. Glycyrrhizin, a Direct HMGB1 Antagonist, Ameliorates Inflammatory Infiltration in a Model of Autoimmune Thyroiditis via Inhibition of TLR2-HMGB1 Signaling. Thyroid. 2017 May;27(5):722-731.
