Data Sheet

Inhibitors, Agonists, Screening Libraries

Product Name: Lycopene
Cat. No.: HY-N0287
CAS No.: 502-65-8
Molecular Formula: C_{40}H_{56}
Molecular Weight: 536.87
Target: Others
Pathway: Others
Solubility: DMSO: 6.4 mg/mL

BIOLOGICAL ACTIVITY:

Lycopene is naturally occurring carotenoids found in tomato, tomato products, and in other red fruits and vegetables; exhibits antioxidant effects.

In Vitro: Sufficient uptake of lycopene from the diet is necessary to benefit from its health promoting effects, since humans are unable to synthesise lycopene *de novo*. Lycopene significantly inhibits prostate and breast cancer cell growth at physiologically relevant concentrations of 1.25 μM and also causes a 30-40 % reduction in inhibitor of kappa B phosphorylation in the cells\(^1\). Increased intake of lycopene, a major carotenoid in tomatoes, consumed as the all-trans-isomer attenuates alcohol induced apoptosis in 2E1 cells and reduces risk of prostate, lung and digestive cancers. Lycopene plays a role in the protection against photooxidative processes by acting as singlet molecular oxygen and peroxyl radicals scavengers and can interact synergistically with other antioxidants\(^2\).

Lycopene as a carotenoid can react with types of reactive oxygen species (ROS) in three different mechanisms: I) by electron-transfer, II) by hydrogen atom transfer or III) by adduct formation. Lycopene is able to deactivate singlet oxygen mainly by physical quenching\(^3\). Lycopene decreases ROS production in SK-Hep-1 cells through inhibition of NADPH oxidase, brought about in the PKC pathway\(^4\).

In Vivo: Lycopene is the most predominant carotenoid in human plasma and has a half life of about 2-3 days\(^2\). Lycopene or processed tomatoes may lead to a reduction of intima-media thickness in vessel walls\(^3\). Lycopene exerts protective effects against ATZ-induced toxicity in rat adrenal cortex. These effects may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO-1 pathway\(^4\). Lycopene improves hepatotoxicity acting as an antioxidant, reduces GSSG and regulates tGSH and CAT levels, reduces oxidative damage\(^5\).

PROTOCOL (Extracted from published papers and Only for reference)

Cell Assay: \(^1\) PC3 cells and MDA-MB-231 cells are treated with (0, 0.5, 1.25, 2.5 and 5 μM) lycopene for 48 h. Cell survival/growth is measured using the colorimetric MTS assay method. MTS-PMS complex (20 μL) is added to each well. The catalytic activity of viable cells results in formazan dye production, which is then quantified. Cells are incubated with the dye for 1 h, followed by absorbance reading at 492 nm on a spectrophotometer\(^1\).

Animal Administration: \(^4\) Rat: Lycopene is dissolved in corn oil. 35 adult male albino rats are randomized into five equal groups: untreated control, vehicle control (receives 0.5 mL corn oil/day), lycopene (10 mg/kg b.w./day), ATZ (dissolved in 0.5 mL corn oil 300 mg/kg b.w./day), and ATZ + lycopene. All treatments are given by oral gavage for 4 weeks\(^4\).

References:

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA