Astragaloside IV

Cat. No.: HY-N0431
CAS No.: 84687-43-4
Molecular Formula: C₄₁H₆₈O₁₄
Molecular Weight: 784.97
Target: MMP; ERK; JNK
Pathway: Metabolic Enzyme/Protease; MAPK/ERK Pathway; Stem Cell/Wnt
Storage: Powder -20°C 3 years
 4°C 2 years
 In solvent -80°C 6 months
 -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro
DMSO : 390 mg/mL (496.83 mM; Need ultrasonic)

Preparing Stock Solutions

<table>
<thead>
<tr>
<th>Solvent Concentration</th>
<th>1 mg</th>
<th>5 mg</th>
<th>10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM</td>
<td>1.2739 mL</td>
<td>6.3697 mL</td>
<td>12.7393 mL</td>
</tr>
<tr>
<td>5 mM</td>
<td>0.2548 mL</td>
<td>1.2739 mL</td>
<td>2.5479 mL</td>
</tr>
<tr>
<td>10 mM</td>
<td>0.1274 mL</td>
<td>0.6370 mL</td>
<td>1.2739 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description
Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells.

IC₅₀ & Target

<table>
<thead>
<tr>
<th>MMP-2</th>
<th>MMP-9</th>
<th>ERK1</th>
<th>ERK2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JNK</td>
<td></td>
</tr>
</tbody>
</table>

In Vitro
Astragaloside IV (10, 20, 40 ng/mL) inhibits NSCLC cell growth, whereas low concentrations of astragaloside IV (1, 2.5, 5 ng/mL) has no obvious cytotoxicity on cell viability. Moreover, combined treatment with astragaloside IV significantly increases chemosensitivity to cisplatin in NSCLC cells. On the molecular level, astragaloside IV co-treatment significantly inhibits the mRNA and protein levels of B7-H3 in the presence of cisplatin[2]. Astragaloside IV inhibits the viability and invasive potential of MDA-MB-231 breast cancer cells, suppresses the activation of the mitogen activated protein kinase (MAPK) family members ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2 and -9[4].
In Vivo

Astragaloside IV (10, 20 mg/kg, p.o.) exhibits a potent ability to prevent cognitive deficits induced by transient cerebral ischemia and reperfusion. Astragaloside IV (10 mg/kg) and Astragaloside IV (20 mg/kg) can significantly decrease the levels of these cytokines compared to the Model group. Astragaloside IV significantly inhibits the level of TLR4 and its downstream proteins, suggesting that both MyD88-dependent and -independent pathways play important roles in the anti-inflammatory effects of Astragaloside IV. Astragaloside IV attenuates NLRP3 and cleaved-caspase-1 expression, and reduces Iba1 protein expression.[1] In the mice model, the high-dose astragaloside IV group has a significant increase in the 48-hour survival rate [60% (9/15) vs 13.3% (2/15), P < 0.05], significant reductions in the serum ALT and AST levels (P < 0.01), and significant reductions in liver histopathological indices and the degree of apoptosis of hepatocytes (P < 0.01), as well as a significant reduction in the content of MDA in liver homogenate (P < 0.01) and a significant increase in the activity of SOD.[3]

PROTOCOL

Kinase Assay[4]

Briefly, MDA-MB-231 cells treated as indicated or tumor tissues are harvested and lysed in Mg\(^{2+}\) lysis buffer containing 50 mM Tris (pH 7.5), 10 mM MgCl\(_2\), 0.5 M NaCl, and protease inhibitor cocktail. Equal amounts of lysates are incubated with PAK-PBD beads at 4°C for 1 h. PAK-PBD beads are pelleted by centrifugation and washed with ish buffer containing 25 mM Tris (pH 7.5), 30 mM MgCl\(_2\), 40 mM NaCl. Active Rac1 is detected by western blotting.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Assay[2]

Cell viability is determined by CCK-8 assay. To be brief, cultured NSCLC cells are seeded into 96-well plates at the density of 4×10\(^4\) (cells/well). Then 10 µL/well CCK8 solution is added and incubated in dark at 37°C for another 2 h. The absorbance is determined with the wavelength of 490 nm.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration[1]

Transient cerebral ischemia and reperfusion is prepared by BCCAO, as BCCAO is considered an ideal model to study transient cerebral ischemia and reperfusion injury-mediated inflammatory response. Mice are randomly divided into the Sham, Model, Astragaloside IV (10 mg/kg) and Astragaloside IV (20 mg/kg) treatment groups. The Astragaloside IV treatment groups are intragastrically administered 7 days before the surgery and terminated on the day of sacrifice. On the day of the surgery, Astragaloside IV is administrated 2 h prior to ischemia. The Sham-operated and Model groups are treated with distilled water. After the mice are anesthetized with an intraperitoneal injection of chloral hydrate (350 mg/kg), the bilateral common carotid arteries are exposed and carefully separated with a small ventral neck incision and occluded twice (20 min each) with ligated surgical silk as described previously with minor modifications. There is a 10 min reperfusion period between the two occlusion periods (ischemia 20 min – reperfusion 10 min – ischemia 20 min). Sham-operated mice are subjected to the same surgical operation without the surgical silk ligation. Mouse body temperature is maintained at 37±0.5°C during the surgery with heating equipment until recovery from the anesthesia.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Li M, et al. Astragaloside IV attenuates cognitive impairments induced by transient cerebral ischemia and reperfusion in mice via anti-inflammatory
