L-Tyrosine-d₂-1

Cat. No.: CAS No.:	HY-N0473S10 30811-19-9	
Molecular Formula:	C ₉ H ₉ D ₂ NO ₃	D.
Molecular Weight:	183.2	$-\gamma$
Target:	Endogenous Metabolite	но
Pathway:	Metabolic Enzyme/Protease	D
Storage:	4°C, protect from light, stored under nitrogen * In solvent : -80°C, 6 months; -20°C, 1 month (protect from light, stored under nitrogen)	_

SOLVENT & SOLUBILITY

	Mass Solvent Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	5.4585 mL	27.2926 mL	54.5852 mL
Stock Solutions	5 mM	1.0917 mL	5.4585 mL	10.9170 mL
	10 mM	0.5459 mL	2.7293 mL	5.4585 mL

Description	L-Tyrosine-d ₂ -1 is the deuterium labeled L-Tyrosine. L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex.		
In Vitro	Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		

REFERENCES

Page 1 of 2

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

OH

NH₂

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA