Product Data Sheet

Xylitol-5-¹³C

Cat. No.: HY-N0538S2 Molecular Formula: $C_4^{13}CH_{12}O_5$ Molecular Weight: 153.14

Target: Autophagy; Bacterial; Endogenous Metabolite

Pathway: Autophagy; Anti-infection; Metabolic Enzyme/Protease

Storage: Powder -20°C 3 years

In solvent

4°C 2 years -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (653.00 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	6.5300 mL	32.6499 mL	65.2997 mL
	5 mM	1.3060 mL	6.5300 mL	13.0599 mL
	10 mM	0.6530 mL	3.2650 mL	6.5300 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Xylitol-5- 13 C is the 13 C labeled Xylit[1][2].
In Vitro	Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019 Feb;53(2):211-216.

[2]. http://en.wikipedia.org/wiki/Xylitol

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com