Pseudoginsenoside F11

Cat. No.: HY-N0541
CAS No.: 69884-00-0
Molecular Formula: C_{42}H_{72}O_{14}
Molecular Weight: 801.01
Target: Others
Pathway: Others
Storage: Powder -20°C 3 years
4°C 2 years
In solvent -80°C 6 months
-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro
DMSO : 100 mg/mL (124.84 mM; Need ultrasonic)
H_{2}O : 0.67 mg/mL (0.84 mM; Need ultrasonic)

<table>
<thead>
<tr>
<th>Preparing Stock Solutions</th>
<th>Solvent Concentration</th>
<th>Mass: 1 mg</th>
<th>Mass: 5 mg</th>
<th>Mass: 10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM</td>
<td></td>
<td>1.2484 mL</td>
<td>6.2421 mL</td>
<td>12.4842 mL</td>
</tr>
<tr>
<td>5 mM</td>
<td></td>
<td>0.2497 mL</td>
<td>1.2484 mL</td>
<td>2.4968 mL</td>
</tr>
<tr>
<td>10 mM</td>
<td></td>
<td>0.1248 mL</td>
<td>0.6242 mL</td>
<td>1.2484 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

In Vivo
1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline
 Solubility: ≥ 2.75 mg/mL (3.43 mM); Clear solution
2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)
 Solubility: ≥ 2.75 mg/mL (3.43 mM); Clear solution
3. Add each solvent one by one: 10% DMSO >> 90% corn oil
 Solubility: ≥ 2.75 mg/mL (3.43 mM); Clear solution

BIOLOGICAL ACTIVITY

Description
Pseudoginsenoside F11 (Ginsenoside A1), a component of Panax quinquefolium (American ginseng), has been demonstrated to antagonize the learning and memory deficits induced by scopolamine, morphine and methamphetamine in mice.

In Vitro
Biochemical experiments revealed that Pseudoginsenoside F11 (Ginsenoside A1) could inhibit diprenorphine (DIP)
<table>
<thead>
<tr>
<th>In Vivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>One in vivo model of cisplatin-induced acute renal failure was performed. The results showed that pretreatment with Pseudoginsenoside Pseudoginsenoside F11 (Ginsenoside A1) reduced cisplatin-elevated blood urea nitrogen and creatinine levels, as well as ameliorated the histopathological damage [1]. We tested the effects of Pseudoginsenoside Pseudoginsenoside F11 (Ginsenoside A1) on morphine-induced development of behavioral sensitization and alterations in glutamate levels in the medial prefrontal cortex (mPFC) in freely moving mice by using in vivo microdialysis. As the results shown, Pseudoginsenoside Pseudoginsenoside F11 (Ginsenoside A1) antagonized the development of behavioral sensitization and decrease of glutamate in the mPFC induced by morphine[3].</td>
</tr>
</tbody>
</table>

REFERENCES

