Leonurine

Cat. No.: HY-N0741
CAS No.: 24697-74-3
Molecular Formula: C₁₄H₂₁N₃O₅
Molecular Weight: 311.33
Target: Autophagy
Pathway: Autophagy
Storage:
- Powder: -20°C, 3 years
- 4°C, 2 years
- In solvent: -80°C, 6 months; -20°C, 1 month

SOLVENT & SOLUBILITY

In Vitro
DMSO: 6 mg/mL (19.27 mM; Need ultrasonic)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>1 mg</th>
<th>5 mg</th>
<th>10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM</td>
<td>3.2120 mL</td>
<td>16.0601 mL</td>
<td>32.1203 mL</td>
</tr>
<tr>
<td>5 mM</td>
<td>0.6424 mL</td>
<td>3.2120 mL</td>
<td>6.4241 mL</td>
</tr>
<tr>
<td>10 mM</td>
<td>0.3212 mL</td>
<td>1.6060 mL</td>
<td>3.2120 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description
Leonurine is an alkaloid isolated from Herba leonuri, with anti-oxidative and anti-inflammatory.

In Vitro
Leonurine (0, 5, 10, 20, 40, 80 µM) causes diminution in lipid accumulation, cellular cholesterol content, including total cholesterol (TC), free cholesterol (FC) and cholesteryl ester (CE), and increase in apoA-I- or HDL-mediated cholesterol efflux after treatment for 24 h. Leonurine also significantly and dose-dependently increases the expressions of ABCA1 and ABCG1 at the mRNA and protein levels in human THP-1 macrophages, and such effect is involved in PPARγ[1]. Leonurine hydrochloride (LH) shows protective effect on cell viability of HepG2 and HL-7702 cells incubated with palmitic acid (PA) of free fatty acid (FFA) for 24 h. Leonurine hydrochloride (125, 250, 500 µM) improves cellular lipid accumulation in HepG2 and HL-7702 cells via activating AMPK/SREBP1 pathway[2]. Leonurine (5, 10, 20 µM) inhibits the expression of iNOS, COX-2, PGE2, NO, TNF-α, and IL-6 in IL-1β-induced human chondrocytes, suppresses ECM degradation in human OA chondrocytes, and blocks IL-1β-induced PI3K and Akt phosphorylation in a dose-dependent manner[3].

In Vivo
Leonurine (10 mg/kg/d, p.o.) significantly increases the expressions of PPARγ, LXRα, ABCA1 and ABCG1, and
decreases both TG and TC levels in serum of mice[1]. Leonurine hydrochloride (50, 100, 200 mg/kg) improves intracellular lipid accumulation via activating AMPK/SREBP1 pathway, enhances biochemical parameters, reduces hepatic lipoperoxide and increases antioxidant levels in mice[2]. Leonurine (20 mg/kg, p.o.) ameliorates osteoarthritis development in mouse DMM model[3].

PROTOCOL

Cell Assay [2]

MTT assay is performed to study the cytotoxic effects of Leonurine in HepG2 and HL-7702 cells. Briefly, HepG2 and HL-7702 cells are seeded for 24 h at the density of 3×10^4 cells/well in 96-well plates. After 24 h incubation, cells are treated with different concentrations of Leonurine (0-1000 μM) and the control group is treated with only DMEM for 24 h at 37°C in 5% CO₂ incubator. Then, these cells are treated with MTT solution (5 mg/mL) for further 4 h. After 4 h incubation, DMEM containing MTT solution is discarded. Cells are then dissolved by adding DMSO (200 μL) to each well and the solutions are mixed thoroughly for 5 min. Finally, the absorbance is determined at 570 nm with a microplate reader[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration [1]

Mice[1]

ApoE⁻/⁻ mice (male, eight-week old) are fed a chow diet for 2 weeks, apoE⁻/⁻ mice are randomly divided into several groups (n=15/group). Mice in the Leonurine group are intragastrically administered with Leonurine (10 mg/kg/d) every day and continued for 8 weeks. The control group is fed with an equal volume of PBS. At week 16, mice are euthanized, followed by collecting the blood and tissue samples for further analyses[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

