Timosaponin AIII

Cat. No.: HY-N0810
CAS No.: 41059-79-4
Molecular Formula: C₃₉H₆₄O₁₃
Molecular Weight: 740.92
Target: AChE
Pathway: Neuronal Signaling
Storage:
- Powder: -20°C for 3 years, 4°C for 2 years
- In solvent: -80°C for 6 months, -20°C for 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (67.48 mM; Need ultrasonic)

<table>
<thead>
<tr>
<th>Solvent Concentration</th>
<th>Mass 1 mg</th>
<th>Mass 5 mg</th>
<th>Mass 10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM</td>
<td>1.3497 mL</td>
<td>6.7484 mL</td>
<td>13.4967 mL</td>
</tr>
<tr>
<td>5 mM</td>
<td>0.2699 mL</td>
<td>1.3497 mL</td>
<td>2.6993 mL</td>
</tr>
<tr>
<td>10 mM</td>
<td>0.1350 mL</td>
<td>0.6748 mL</td>
<td>1.3497 mL</td>
</tr>
</tbody>
</table>

Preparing Stock Solutions

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)
 Solubility: ≥ 2.5 mg/mL (3.37 mM); Clear solution
2. Add each solvent one by one: 10% DMSO >> 90% corn oil
 Solubility: ≥ 2.5 mg/mL (3.37 mM); Clear solution

BIOLOGICAL ACTIVITY

Description
Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC₅₀ of 35.4 μM.

IC₅₀ & Target
IC₅₀: 35.4 μM (AChE)[¹].

In Vitro
Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC₅₀ of 35.4 μM[¹]. Timosaponin AIII is identified as a major selective cytotoxic activity in BN108, and its selective cytotoxic activity involves inhibition of mTOR, induction of ER stress and protective autophagy[²].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo
Of the tested steroidal saponins, Timosaponin AIII (TA3) most potently improves memory deficits. Timosaponin AIII...
increases the scopolamine-induced reduction in step-through latency by 17% (10 mg/kg), 28% (20 mg/kg), and 43% (40 mg/kg). During the acquisition trial, no differences in latent time are observed. Timosaponin AIII (20, 40 mg/kg, p.o.) potently inhibits this reduction of acetylcholine in scopolamine-treated mouse brain. The inhibitory effect of Timosaponin AIII is comparable to that of tacrine, which is used as a positive control[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Animal Administration [1]

Mice[1]

Male ICR mice weighing 28-30 g are used. For the acquisition trial, mice are initially placed in the illuminated compartment and the door between the two compartments is opened 10 s later. Each group contains ten mice. One hour or 5 h before the acquisition trial, mice receive each test agent (e.g., Timosaponin AIII 10, 20 or 40 mg/kg, p.o.). One hour before the acquisition trial, mice receive tacrine (10 mg/kg, p.o.) as a positive control. Memory impairment is induced by scopolamine treatment (1 mg/kg, i.p.) 0.5 h or 4.5 h after the administration of test agents, tacrine, or 10% Tween 80 solution. Control animals are administered 10% Tween 80 solution alone. Twenty-four hours after the acquisition trial, the mice are again placed in the illuminated compartment for retention trials. The time taken for a mouse to enter the dark compartment after the door opened is measured as the latency time in both acquisition and retention trials, with a maximum of 300 s[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA